什么是IBIS模型 IBIS(Input/Output Buffer Information Specification)模型是一种基于V/I曲线的对I/O BUFFER快速准确建模的方法,是反映芯片驱动和接收电气特性的一种国际标准,它提供一种标准的文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应的计算与仿真。. v/ w9 M6 n: U( G# Z ! B; B; v' ?( |1 m IBIS规范最初由一个被称为IBIS开放论坛的工业组织编写,这个组织是由一些EDA厂商、计算机制造商、半导体厂商和大学组成的。IBIS的版本发布情况为:1993年4月第一次推出Version1.0版,同年6月经修改后发布了Version1.1版,1994年6月在San Diego 通过了Version2.0 版,同年12 月升级为Version2.1 版,1995 年12 月其Version2.1 版成为ANSI/EIA-656 标准,1997年6月发布了Version3.0 版,同年9月被接纳为IEC 62012-1标准,1998 年升级为Version3.1版,1999年1月推出了当前最新的版本Version3.2版。 IBIS本身只是一种文件格式,它说明在一标准的IBIS文件中如何记录一个芯片的驱动器和接收器的不同参数,但并不说明这些被记录的参数如何使用,这些参数需要由使用IBIS模型的仿真工具来读取。欲使用IBIS进行实际的仿真,需要先完成以下四件工作: O( X* i6 z- j4 b, P& A (1)获取有关芯片驱动器和接收器的原始信息源; (2)获取一种将原始数据转换为IBIS格式的方法;2 d ^" I I. j8 z- U (3)提供用于仿真的可被计算机识别的布局布线信息;! p: y k" D9 u, K2 {( `8 s (4)提供一种能够读取IBIS和布局布线格式并能够进行分析计算的软件工具。6 x- D. n( Y% {" h) I IBIS是一种简单直观的文件格式,很适合用于类似于Spice(但不是Spice,因为IBIS文件格式不能直接被Spice工具读取)的电路仿真工具。它提供驱动器和接收器的行为描述,但不泄漏电路内部构造的知识产权细节。换句话说,销售商可以用IBIS模型来说明它们最新的门级设计工作,而不会给其竞争对手透露过多的产品信息。并且,因为IBIS是一个简单的模型,当做简单的带负载仿真时,比相应的全Spice三极管级模型仿真要节省10~15倍的计算量。 f8 p' O IBIS提供两条完整的V-I曲线分别代表驱动器为高电平和低电平状态,以及在确定的转换速度下状态转换的曲线。V-I曲线的作用在于为IBIS提供保护二极管、TTL图腾柱驱动源和射极跟随输出等非线性效应的建模能力。 IBIS模型的优点1 j F; B. Q# G, G% x
1、多芯片厂商缺乏对IBIS模型的支持。而缺乏IBIS模型,IBIS工具就无法工作。虽然IBIS文件可以手工创建或通过Spice模型自动转换,但是如果无法从厂家得到最小上升时间参数,任何转换工具都无能为力; 2、IBIS不能理想地处理上升时间受控的驱动器类型的电路,特别是那些包含复杂反馈的电路; 3、IBIS缺乏对地弹噪声的建模能力。IBIS模型2.1版包含了描述不同管脚组合的互感,从这里可以提取一些非常有用的地弹信息。它不工作的原因在于建模方式,当输出由高电平向低电平跳变时,大的地弹电压可以改变输出驱动器的行为。& n6 j5 r- b! v* @ K9 J7 C% K n1 p) C! s! B* m+ c. T 什么是SPICE模型 SPICE(Simulation Program with Integrated Circuit Emphasis)。随着I/O开关频率的增加和电压电平的降低,I/O的准确模拟仿真成了现代高速数字系统设计中一个很重要的部分。通过精确仿真I/O缓冲器、终端和电路板迹线,您可以极大地缩短新设计的面市时间。通过在设计之初识别与问题相关的信号完整性,可以减少板固定点的数量。 - b$ ~' _- O$ S+ z, X( G ) x4 i+ R+ C! ~1 A0 ~ 传统意义上,SPICE分析用在需要高准确度的IC设计之类的领域中。然而,在PCB和系统范围内,对于用户和器件供应商而言,SPICE方法有几个缺点。 9 U6 |* A. O' c5 x. T2 I6 i4 t! P
由于SPICE仿真在晶体管水平上模拟电路,所以它们包含电路和工艺参数方面的详细信息。大多数IC供应商认为这类信息是专有的,而拒绝将他们的模型公诸于众。 虽然SPICE仿真很精确,但是仿真速度对于瞬态仿真分析(常用在评估信号完整性性能时)而言特别慢。 并且,不是所有的SPICE仿真器都是完全兼容的。 默认的仿真器选项可能随SPICE仿真器的不同而不同。 因为某些功能很强大的选项可以控制精度、会聚和算法类型,所以任何不一致的选项都可能导致不同仿真器的仿真结果的相关性很差。 最后,因为SPICE存在变体,所以通常仿真器之间的模型并不总是兼容的;它们必须为特定的仿真器进行筛选。 o9 C. M; ~6 }/ Q 什么是电磁干扰(EMI)和电磁兼容性(EMC) 电磁干扰(Electromagnetic Interference),有传导干扰和辐射干扰两种。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。 T 自从电子系统降噪技术在70年代中期出现以来,主要由于美国联邦通讯委员会在1990年和欧盟在1992 提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性EMC(Electromagnetic Compatibility)。 e 什么是信号完整性(signal integrity)( R C9 R1 L K4 i1 p 8 v1 ]9 C- p/ ]8 } 信号完整性是指信号在信号线上的质量。信号具有良好的信号完整性是指当在需要的时候,具有所必需达到的电压电平数值。差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。主要的信号完整性问题包括反射、振荡、地弹、串扰等。/ ?& D! g4 w: \3 y. t3 d! w 9 R" p1 v" M4 d% u2 q 什么是反射(reflection) 反射就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 # P O) S$ e/ r* F 什么是串扰(crosstalk)1 I( q8 O. k6 |# b1 |0 y
串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。5 \4 b: p' j$ H4 w
什么是过冲(overshoot)和下冲(undershoot) g4 q( W! ]4 z 过冲就是第一个峰值或谷值超过设定电压——对于上升沿是指最高电压而对于下降沿是指最低电压。下冲是指下一个谷值或峰值。过分的过冲能够引起保护二极管工作,导致过早地失效。过分的下冲能够引起假的时钟或数据错误。' a% F+ z$ j1 ^% V0 r5 [6 _6 e
文章评论(0条评论)
登录后参与讨论