三极管原理--我见过最通俗讲法,当初我看完以后基本上疑惑就全解开了。
对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。
但三极管厉害的地方在于:它可以通过小电流控制大电流。
放大的原理就在于:通过小的交流输入,控制大的静态直流。
假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。
所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。
如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。
在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制组件。
如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。
(纠正:流到小阀门的水流太小了,连小阀门都无法打开,进而大阀门也一直关闭,这就是三极管中的截止区。)
饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。
在仿真电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。
而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。
你后面的那些关于饱和区、截止区的比喻描述的有点问题,但是你肯定是知道这些原理的,呵呵。
引用你的比喻,我修改一下吧:
截止区:应该是那个小的阀门开启的还不够,不能打开打阀门,这种情况是截止区。
饱和区:应该是小的阀门开启的太大了,以至于大阀门里放出的水流已经到了它极限的流量,但是 你关小 小阀门的话,可以让三极管工作状态从饱和区返回到线性区。
线性区:就是水流处于可调节的状态。
击穿区:比如有水流存在一个水库中,水位太高(相应与Vce太大),导致有缺口产生,水流流出。而且,随着小阀门的开启,这个击穿电压变低,就是更容易击穿了。
用户961013 2016-1-6 09:38
用户377235 2016-1-5 19:50
roumao_411466022 2016-1-4 09:41
用户1804684 2015-10-21 09:35
用户1494123 2015-8-11 08:25
用户1578945 2015-8-10 10:56
用户1175180 2015-8-4 18:07
用户1618393 2015-8-2 06:59
zwczhang_536352693 2015-7-22 11:02
用户377235 2015-7-22 10:54
卵并然!