原创 设备驱动程序中的一些具体问题及main.c函数分析

2010-1-15 16:47 3180 6 6 分类: MCU/ 嵌入式

设备驱动程序中的一些具体问题


 


<?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />1.I/OPort


 


   在linux下,操作系统没有对I/O口屏蔽,易引起混乱,每个驱动程序应该避免误用端口。有两个重要函数:


  1check_region(int io_port,int off_set)这个函数查看系统的I/O表,看是否有别的驱动程序占用某一段I/O口。Io_port:端口的基地址,off_set:端口占用的范围。返回值为0没有占用,非0,已经被占用。


  2request_region(int io_port,int off_set,char *devname)端口映射,没被占用在驱动程序中就可以使用它,在使用前,向系统登记,以防止被其他程序占用,登记后,在/proc/ioports文件中可以看到登记的端口。Io_port: 端口的基地址off_set: 端口占用的范围devname使用这段io地址的设备名。


   在对I/O口登记后,就可以放心地用inb(),outb()之类的函数,前表从某一个寄存器读一字节,后表向某一个寄存器发送一个字节。在C语言中则不用,直接赋值给地址即可。其中串口的驱动程序就要用到上面的函数。


 


2.内存操作


 


  在设备驱动程序中动态开辟内存,不是用malloc,而是kmalloc,或者用get_free_pages直接申请页。释放内存的是kfreefree_pages.请注意kmalloc等函数返回的是物理地址。 Kmalloc最大只能开辟128K-16B16个字节是被页描述符结构占用了。一般占用F0000000以上的地址空间(如X86),在驱动程序中不能直接访问,要通过kernel函数vremap获得重新映射以后的地址。即在F0000000上的的地址空间的需要重新映射。


 


3.linux内核/proc目录中的相关信息


 


proc目录中,在侧为进程ID号,可以打印看到相关信息: ps –e.进入一个文件:cd 1727显示详细信息:ls –l打印出一种信息:cat statm返回到/proc可以打印出:cat interrupts(中断相关信息)cat iomem(io内存分配相关信息)cat ioports(io端口相关信息)cat filesystems(文件系统信息)其中支持的文件系统: proc进程空间映射系统, tmpfs临时存放文件系统, ext2不支持日志, ext3支持日志, ramfsram当中运行的系统,iso9660光驱系统,等,要用jffs或是cramfs制作的文件系统此内核是不支持的,因此要在开发板上做相关的系统文件;cat devices 当前打开的设备,若已安装驱动insmod,则应可以看到其设备;cat modules 当前运行主要的加载哪些模块。


 


4. linux内核启动的流程:


 


先启动bootloader, 然后跳到内核里面,在在内核里面执行head.s文件以开发板提供的内核为例,/arm2410cl/kernel/linux-2.4.18-2410cl/arch/arm/compressed/head.s其为汇编程序写成。Head.s完成相关的初始化后会跳到C语言的入处/arm2410cl/kernel/linux-2.4.18-2410cl/init/main.c此函数是整个程序的入口点。以下分析此函数的内容:程序会从head.s文件跳到start_kernel()这个函数开始执行


 


 


/*
 *  linux/init/main.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  GK 2/5/95  -  Changed to support mounting root fs via NFS
 *  Added initrd & change_root: Werner Almesberger & Hans Lermen, Feb '96
 *  Moan early if gcc is old, avoiding bogus kernels - Paul Gortmaker, May '96
 *  Simplified starting of init:  Michael A. Griffith <grif@acm.org>
 */


#define __KERNEL_SYSCALLS__


#include <linux/config.h>
#include <linux/proc_fs.h>
#include <linux/devfs_fs_kernel.h>
#include <linux/unistd.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/blk.h>
#include <linux/hdreg.h>
#include <linux/iobuf.h>
#include <linux/bootmem.h>
#include <linux/tty.h>


#include <asm/io.h>
#include <asm/bugs.h>


#if defined(CONFIG_ARCH_S390)
#include <asm/s390mach.h>
#include <asm/ccwcache.h>
#endif


#ifdef CONFIG_PCI
#include <linux/pci.h>
#endif


#ifdef CONFIG_DIO
#include <linux/dio.h>
#endif


#ifdef CONFIG_ZORRO
#include <linux/zorro.h>
#endif


#ifdef CONFIG_MTRR
#  include <asm/mtrr.h>
#endif


#ifdef CONFIG_NUBUS
#include <linux/nubus.h>
#endif


#ifdef CONFIG_ISAPNP
#include <linux/isapnp.h>
#endif


#ifdef CONFIG_IRDA
extern int irda_proto_init(void);
extern int irda_device_init(void);
#endif


#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/smp.h>
#endif


/*
 * Versions of gcc older than that listed below may actually compile
 * and link okay, but the end product can have subtle run time bugs.
 * To avoid associated bogus bug reports, we flatly refuse to compile
 * with a gcc that is known to be too old from the very beginning.
 */
#if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 91)
#error Sorry, your GCC is too old. It builds incorrect kernels.
#endif


extern char _stext, _etext;
extern char *linux_banner;


static int init(void *);


extern void init_IRQ(void);
extern void init_modules(void);
extern void sock_init(void);
extern void fork_init(unsigned long);
extern void mca_init(void);
extern void sbus_init(void);
extern void ppc_init(void);
extern void sysctl_init(void);
extern void signals_init(void);
extern int init_pcmcia_ds(void);


extern void free_initmem(void);


#ifdef CONFIG_TC
extern void tc_init(void);
#endif


extern void ecard_init(void);


#if defined(CONFIG_SYSVIPC)
extern void ipc_init(void);
#endif
#ifdef CONFIG_PERFMON
extern void perfmon_init(void);
#endif


/*
 * Boot command-line arguments
 */
#define MAX_INIT_ARGS 8
#define MAX_INIT_ENVS 8


extern void time_init(void);
extern void softirq_init(void);


int rows, cols;


#ifdef CONFIG_BLK_DEV_INITRD
unsigned int real_root_dev; /* do_proc_dointvec cannot handle kdev_t */
#endif


int root_mountflags = MS_RDONLY;
char *execute_command;
char root_device_name[64];



static char * argv_init[MAX_INIT_ARGS+2] = { "init", NULL, };
static char * envp_init[MAX_INIT_ENVS+2] = { "HOME=/", "TERM=linux", NULL, };


static int __init profile_setup(char *str)
{
    int par;
    if (get_option(&str,&par)) prof_shift = par;
 return 1;
}


__setup("profile=", profile_setup);



static struct dev_name_struct {
 const char *name;
 const int num;
} root_dev_names[] __initdata = {
 { "nfs",     0x00ff },
 { "hda",     0x0300 },
 { "hdb",     0x0340 },
 { "loop",    0x0700 },
 { "hdc",     0x1600 },
 { "hdd",     0x1640 },
 { "hde",     0x2100 },
 { "hdf",     0x2140 },
 { "hdg",     0x2200 },
 { "hdh",     0x2240 },
 { "hdi",     0x3800 },
 { "hdj",     0x3840 },
 { "hdk",     0x3900 },
 { "hdl",     0x3940 },
 { "hdm",     0x5800 },
 { "hdn",     0x5840 },
 { "hdo",     0x5900 },
 { "hdp",     0x5940 },
 { "hdq",     0x5A00 },
 { "hdr",     0x5A40 },
 { "hds",     0x5B00 },
 { "hdt",     0x5B40 },
 { "sda",     0x0800 },
 { "sdb",     0x0810 },
 { "sdc",     0x0820 },
 { "sdd",     0x0830 },
 { "sde",     0x0840 },
 { "sdf",     0x0850 },
 { "sdg",     0x0860 },
 { "sdh",     0x0870 },
 { "sdi",     0x0880 },
 { "sdj",     0x0890 },
 { "sdk",     0x08a0 },
 { "sdl",     0x08b0 },
 { "sdm",     0x08c0 },
 { "sdn",     0x08d0 },
 { "sdo",     0x08e0 },
 { "sdp",     0x08f0 },
 { "ada",     0x1c00 },
 { "adb",     0x1c10 },
 { "adc",     0x1c20 },
 { "add",     0x1c30 },
 { "ade",     0x1c40 },
 { "fd",      0x0200 },
 { "md",      0x0900 },     
 { "xda",     0x0d00 },
 { "xdb",     0x0d40 },
 { "ram",     0x0100 },
 { "scd",     0x0b00 },
 { "mcd",     0x1700 },
 { "cdu535",  0x1800 },
 { "sonycd",  0x1800 },
 { "aztcd",   0x1d00 },
 { "cm206cd", 0x2000 },
 { "gscd",    0x1000 },
 { "sbpcd",   0x1900 },
 { "eda",     0x2400 },
 { "edb",     0x2440 },
 { "pda", 0x2d00 },
 { "pdb", 0x2d10 },
 { "pdc", 0x2d20 },
 { "pdd", 0x2d30 },
 { "pcd", 0x2e00 },
 { "pf",  0x2f00 },
 { "apblock", APBLOCK_MAJOR << 8},
 { "ddv", DDV_MAJOR << 8},
 { "jsfd",    JSFD_MAJOR << 8},
#if defined(CONFIG_ARCH_S390)
 { "dasda", (DASD_MAJOR << MINORBITS) },
 { "dasdb", (DASD_MAJOR << MINORBITS) + (1 << 2) },
 { "dasdc", (DASD_MAJOR << MINORBITS) + (2 << 2) },
 { "dasdd", (DASD_MAJOR << MINORBITS) + (3 << 2) },
 { "dasde", (DASD_MAJOR << MINORBITS) + (4 << 2) },
 { "dasdf", (DASD_MAJOR << MINORBITS) + (5 << 2) },
 { "dasdg", (DASD_MAJOR << MINORBITS) + (6 << 2) },
 { "dasdh", (DASD_MAJOR << MINORBITS) + (7 << 2) },
#endif
#if defined(CONFIG_BLK_CPQ_DA) || defined(CONFIG_BLK_CPQ_DA_MODULE)
 { "ida/c0d0p",0x4800 },
 { "ida/c0d1p",0x4810 },
 { "ida/c0d2p",0x4820 },
 { "ida/c0d3p",0x4830 },
 { "ida/c0d4p",0x4840 },
 { "ida/c0d5p",0x4850 },
 { "ida/c0d6p",0x4860 },
 { "ida/c0d7p",0x4870 },
 { "ida/c0d8p",0x4880 },
 { "ida/c0d9p",0x4890 },
 { "ida/c0d10p",0x48A0 },
 { "ida/c0d11p",0x48B0 },
 { "ida/c0d12p",0x48C0 },
 { "ida/c0d13p",0x48D0 },
 { "ida/c0d14p",0x48E0 },
 { "ida/c0d15p",0x48F0 },
#endif
#if defined(CONFIG_BLK_CPQ_CISS_DA) || defined(CONFIG_BLK_CPQ_CISS_DA_MODULE)
 { "cciss/c0d0p",0x6800 },
 { "cciss/c0d1p",0x6810 },
 { "cciss/c0d2p",0x6820 },
 { "cciss/c0d3p",0x6830 },
 { "cciss/c0d4p",0x6840 },
 { "cciss/c0d5p",0x6850 },
 { "cciss/c0d6p",0x6860 },
 { "cciss/c0d7p",0x6870 },
 { "cciss/c0d8p",0x6880 },
 { "cciss/c0d9p",0x6890 },
 { "cciss/c0d10p",0x68A0 },
 { "cciss/c0d11p",0x68B0 },
 { "cciss/c0d12p",0x68C0 },
 { "cciss/c0d13p",0x68D0 },
 { "cciss/c0d14p",0x68E0 },
 { "cciss/c0d15p",0x68F0 },
#endif
 { "nftla", 0x5d00 },
 { "nftlb", 0x5d10 },
 { "nftlc", 0x5d20 },
 { "nftld", 0x5d30 },
 { "ftla", 0x2c00 },
 { "ftlb", 0x2c08 },
 { "ftlc", 0x2c10 },
 { "ftld", 0x2c18 },
 { "mtdblock", 0x1f00 },
 { NULL, 0 }
};


kdev_t __init name_to_kdev_t(char *line)
{
 int base = 0;


 if (strncmp(line,"/dev/",5) == 0) {
  struct dev_name_struct *dev = root_dev_names;
  line += 5;
  do {
   int len = strlen(dev->name);
   if (strncmp(line,dev->name,len) == 0) {
    line += len;
    base = dev->num;
    break;
   }
   dev++;
  } while (dev->name);
 }
 return to_kdev_t(base + simple_strtoul(line,NULL,base?10:16));
}


static int __init root_dev_setup(char *line)
{
 int i;
 char ch;


 ROOT_DEV = name_to_kdev_t(line);
 memset (root_device_name, 0, sizeof root_device_name);
 if (strncmp (line, "/dev/", 5) == 0) line += 5;
 for (i = 0; i < sizeof root_device_name - 1; ++i)
 {
     ch = line;
     if ( isspace (ch) || (ch == ',') || (ch == '\0') ) break;
     root_device_name = ch;
 }
 return 1;
}


__setup("root=", root_dev_setup);


static int __init checksetup(char *line)
{
 struct kernel_param *p;


 p = &__setup_start;
 do {
  int n = strlen(p->str);
  if (!strncmp(line,p->str,n)) {
   if (p->setup_func(line+n))
    return 1;
  }
  p++;
 } while (p < &__setup_end);
 return 0;
}


/* this should be approx 2 Bo*oMips to start (note initial shift), and will
   still work even if initially too large, it will just take slightly longer */
unsigned long loops_per_jiffy = (1<<12);


/* This is the number of bits of precision for the loops_per_jiffy.  Each
   bit takes on average 1.5/HZ seconds.  This (like the original) is a little
   better than 1% */
#define LPS_PREC 8


void __init calibrate_delay(void)
{
 unsigned long ticks, loopbit;
 int lps_precision = LPS_PREC;


 loops_per_jiffy = (1<<12);


 printk("Calibrating delay loop... ");
 while (loops_per_jiffy <<= 1) {
  /* wait for "start of" clock tick */
  ticks = jiffies;
  while (ticks == jiffies)
   /* nothing */;
  /* Go .. */
  ticks = jiffies;
  __delay(loops_per_jiffy);
  ticks = jiffies - ticks;
  if (ticks)
   break;
 }


/* Do a binary approximation to get loops_per_jiffy set to equal one clock
   (up to lps_precision bits) */
 loops_per_jiffy >>= 1;
 loopbit = loops_per_jiffy;
 while ( lps_precision-- && (loopbit >>= 1) ) {
  loops_per_jiffy |= loopbit;
  ticks = jiffies;
  while (ticks == jiffies);
  ticks = jiffies;
  __delay(loops_per_jiffy);
  if (jiffies != ticks) /* longer than 1 tick */
   loops_per_jiffy &= ~loopbit;
 }


/* Round the value and print it */ 
 printk("%lu.%02lu BogoMIPS\n",
  loops_per_jiffy/(500000/HZ),
  (loops_per_jiffy/(5000/HZ)) % 100);
}


static int __init readonly(char *str)
{
 if (*str)
  return 0;
 root_mountflags |= MS_RDONLY;
 return 1;
}


static int __init readwrite(char *str)
{
 if (*str)
  return 0;
 root_mountflags &= ~MS_RDONLY;
 return 1;
}


static int __init debug_kernel(char *str)
{
 if (*str)
  return 0;
 console_loglevel = 10;
 return 1;
}


static int __init quiet_kernel(char *str)
{
 if (*str)
  return 0;
 console_loglevel = 4;
 return 1;
}


__setup("ro", readonly);
__setup("rw", readwrite);
__setup("debug", debug_kernel);
__setup("quiet", quiet_kernel);


/*
 * This is a simple kernel command line parsing function: it parses
 * the command line, and fills in the arguments/environment to init
 * as appropriate. Any cmd-line option is taken to be an environment
 * variable if it contains the character '='.
 *
 * This routine also checks for options meant for the kernel.
 * These options are not given to init - they are for internal kernel use only.
 */
static void __init parse_options(char *line)
{
 char *next,*quote;
 int args, envs;


 if (!*line)
  return;
 args = 0;
 envs = 1; /* TERM is set to 'linux' by default */
 next = line;
 while ((line = next) != NULL) {
                quote = strchr(line,'"');
                next = strchr(line, ' ');
                while (next != NULL && quote != NULL && quote < next) {
                        /* we found a left quote before the next blank
                         * now we have to find the matching right quote
                         */
                        next = strchr(quote+1, '"');
                        if (next != NULL) {
                                quote = strchr(next+1, '"');
                                next = strchr(next+1, ' ');
                        }
                }
                if (next != NULL)
                        *next++ = 0;
  if (!strncmp(line,"init=",5)) {
   line += 5;
   execute_command = line;
   /* In case LILO is going to boot us with default command line,
    * it prepends "auto" before the whole cmdline which makes
    * the shell think it should execute a script with such name.
    * So we ignore all arguments entered _before_ init=... [MJ]
    */
   args = 0;
   continue;
  }
  if (checksetup(line))
   continue;
  
  /*
   * Then check if it's an environment variable or
   * an option.
   */
  if (strchr(line,'=')) {
   if (envs >= MAX_INIT_ENVS)
    break;
   envp_init[++envs] = line;
  } else {
   if (args >= MAX_INIT_ARGS)
    break;
   if (*line)
    argv_init[++args] = line;
  }
 }
 argv_init[args+1] = NULL;
 envp_init[envs+1] = NULL;
}



extern void setup_arch(char **);
extern void cpu_idle(void);


unsigned long wait_init_idle;


#ifndef CONFIG_SMP


#ifdef CONFIG_X86_LOCAL_APIC
static void __init smp_init(void)
{
 APIC_init_uniprocessor();
}
#else
#define smp_init() do { } while (0)
#endif


#else



/* Called by boot processor to activate the rest. */
static void __init smp_init(void)
{
 /* Get other processors into their bootup holding patterns. */
 smp_boot_cpus();
 wait_init_idle = cpu_online_map;
 clear_bit(current->processor, &wait_init_idle); /* Don't wait on me! */


 smp_threads_ready=1;
 smp_commence();


 /* Wait for the other cpus to set up their idle processes */
 printk("Waiting on wait_init_idle (map = 0x%lx)\n", wait_init_idle);
 while (wait_init_idle) {
  cpu_relax();
  barrier();
 }
 printk("All processors have done init_idle\n");
}


#endif


/*
 * We need to finalize in a non-__init function or else race conditions
 * between the root thread and the init thread may cause start_kernel to
 * be reaped by free_initmem before the root thread has proceeded to
 * cpu_idle.
 */


static void rest_init(void)
{
 kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);
 unlock_kernel();                                     //解锁内核
 current->need_resched = 1;
  cpu_idle();                                            //表示空闲进
}


/*
 * Activate the first processor.
 */


asmlinkage void __init start_kernel(void) //程序会从head.s文件跳到start_kernel()这个函数开始执行,__init关键字,加其linux内核会注册一个init,这样会使前面标有这个关键字的程序自动执行,一般为初始化操作
{
 char * command_line;
 unsigned long mempages;
 extern char saved_command_line[];
/*
 * Interrupts are still disabled. Do necessary setups, then
 * enable them
 */
 lock_kernel();                               //linux内核启动后会加入内核中断锁lock_kernel()
 printk(linux_banner);                   //,再打印出相关信息。
 setup_arch(&command_line);      //基本的结构配置,如对2410的寄存器的初始化,寄存器的使能,配置相关的cache,使用的相关命令等。           
 printk("Kernel command line: %s\n", saved_command_line);
 parse_options(command_line);   //为解析command_line对应的启动信息中的noinitrd root="/dev/bon/3" init="/linuxrc" console="ttyS0"
 trap_init();                                    //陷阱初始化
 init_IRQ();                                  //初始化中断
 sched_init();                                 //调用初始化
 softirq_init();                              //软中断初始化
 time_init();                                 //系统运行的时间初始化


 /*
  * HACK ALERT! This is early. We're enabling the console before
  * we've done PCI setups etc, and console_init() must be aware of
  * this. But we do want output early, in case something goes wrong.
  */
 console_init();                             //初始化控制台,通过串口进行连接的控制台
#ifdef CONFIG_MODULES                   //如果配置了MODULES,还要初始化modules,就是初始化注册的那些modules
 init_modules();
#endif
 if (prof_shift) {
  unsigned int size;
  /* only text is profiled */
  prof_len = (unsigned long) &_etext - (unsigned long) &_stext;
  prof_len >>= prof_shift;
  
  size = prof_len * sizeof(unsigned int) + PAGE_SIZE-1;
  prof_buffer = (unsigned int *) alloc_bootmem(size);
 }


 kmem_cache_init();                   //初始化系统cache
 sti();                                          //开中断
 calibrate_delay();                    //同步延时
#ifdef CONFIG_BLK_DEV_INITRD      //检测是否配置了块设备,如果有进行相应配置
 if (initrd_start && !initrd_below_start_ok &&
   initrd_start < min_low_pfn << PAGE_SHIFT) {
  printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - "
      "disabling it.\n",initrd_start,min_low_pfn << PAGE_SHIFT);
  initrd_start = 0;
 }
#endif
 mem_init();                                //初始化内存空间
 kmem_cache_sizes_init();          //初始化cache
 pgtable_cache_init();                  //将cache重新映射为页表


#ifdef CONFIG_PERFMON
 perfmon_init();
#endif
 mempages = num_physpages;


 fork_init(mempages);                //系统启动会有1号进程,此处为创建1号进程
 proc_caches_init();                     //对proc目录里的cache进行初始
 vfs_caches_init(mempages);       //对虚拟文件系统cache进行初始化
 buffer_init(mempages);               //缓存初始化
 page_cache_init(mempages);     //pagecache初始化
#if defined(CONFIG_ARCH_S390)      //如果配置了相应的结构进行初始化
 ccwcache_init();
#endif
 signals_init();                           //内核当中的信号,进行相应的信号初始化
#ifdef CONFIG_PROC_FS                   //是否配置proc文件系统,如果配置进行proc根目录的初始化
 proc_root_init();
#endif
#if defined(CONFIG_SYSVIPC)             //是否配置了文件系统的进程间通信
 ipc_init();                                   //进程间通信相关通信方式的初始化
#endif
 check_bugs();                            //检测错误
 printk("POSIX conformance testing by UNIFIX\n");


 /*
  * We count on the initial thread going ok
  * Like idlers init is an unlocked kernel thread, which will
  * make syscalls (and thus be locked).
  */
 smp_init();                               //多内核处理器的初始化
 rest_init();                               //说明在具体函数体内
}


#ifdef CONFIG_BLK_DEV_INITRD
static int do_linuxrc(void * shell)
{
 static char *argv[] = { "linuxrc", NULL, };


 close(0);close(1);close(2);
 setsid();
 (void) open("/dev/console",O_RDWR,0);
 (void) dup(0);
 (void) dup(0);
 return execve(shell, argv, envp_init);
}


#endif


struct task_struct *child_reaper = &init_task;


static void __init do_initcalls(void)
{
 initcall_t *call;


 call = &__initcall_start;
 do {
  (*call)();
  call++;
 } while (call < &__initcall_end);


 /* Make sure there is no pending stuff from the initcall sequence */
 flush_scheduled_tasks();
}


/*
 * Ok, the machine is now initialized. None of the devices
 * have been touched yet, but the CPU subsystem is up and
 * running, and memory and process management works.
 *
 * Now we can finally start doing some real work..
 */
static void __init do_basic_setup(void)
{


 /*
  * Tell the world that we're going to be the grim
  * reaper of innocent orphaned children.
  *
  * We don't want people to have to make incorrect
  * assumptions about where in the task array this
  * can be found.
  */
 child_reaper = current;


#if defined(CONFIG_MTRR) /* Do this after SMP initialization */          //是否配置多处理器
/*
 * We should probably create some architecture-dependent "fixup after
 * everything is up" style function where this would belong better
 * than in init/main.c..
 */
 mtrr_init();
#endif


#ifdef CONFIG_SYSCTL                                                                          //是否配置系统控制
 sysctl_init();
#endif


 /*
  * Ok, at this point all CPU's should be initialized, so
  * we can start looking into devices..
  */
#if defined(CONFIG_ARCH_S390)
 s390_init_machine_check();
#endif


#ifdef CONFIG_PCI                     //配置PCI
 pci_init();
#endif
#ifdef CONFIG_SBUS                  //配置系统总线
 sbus_init();
#endif
#if defined(CONFIG_PPC)            //配置powerPC
 ppc_init();
#endif
#ifdef CONFIG_MCA
 mca_init();
#endif
#ifdef CONFIG_ARCH_ACORN
 ecard_init();
#endif
#ifdef CONFIG_ZORRO
 zorro_init();
#endif
#ifdef CONFIG_DIO
 dio_init();
#endif
#ifdef CONFIG_NUBUS
 nubus_init();
#endif
#ifdef CONFIG_ISAPNP
 isapnp_init();
#endif
#ifdef CONFIG_TC
 tc_init();
#endif


 /* Networking initialization needs a process context */
 sock_init();                            //网络相关初始化


 start_context_thread();           //启动基本的内核线程
 do_initcalls();                        //对加了__int关键字的函数进行全部调用,并进行初始化


#ifdef CONFIG_IRDA                       //是否定义红外接口
 irda_proto_init();
 irda_device_init(); /* Must be done after protocol initialization */
#endif
#ifdef CONFIG_PCMCIA                  //是否定义PCMCIA卡
 init_pcmcia_ds();  /* Do this last */
#endif
}


extern void rd_load(void);
extern void initrd_load(void);


/*
 * Prepare the namespace - decide what/where to mount, load ramdisks, etc.
 */
static void prepare_namespace(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
 int real_root_mountflags = root_mountflags;
 if (!initrd_start)
  mount_initrd = 0;
 if (mount_initrd)
  root_mountflags &= ~MS_RDONLY;
 real_root_dev = ROOT_DEV;
#endif


#ifdef CONFIG_BLK_DEV_RAM
#ifdef CONFIG_BLK_DEV_INITRD
 if (mount_initrd)
  initrd_load();
 else
#endif
 rd_load();
#endif


 /* Mount the root filesystem.. */
 mount_root();


 mount_devfs_fs ();


#ifdef CONFIG_BLK_DEV_INITRD
 root_mountflags = real_root_mountflags;
 if (mount_initrd && ROOT_DEV != real_root_dev
     && MAJOR(ROOT_DEV) == RAMDISK_MAJOR && MINOR(ROOT_DEV) == 0) {
  int error;
  int i, pid;


  pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD);
  if (pid > 0) {
   while (pid != wait(&i)) {
    current->policy |= SCHED_YIELD;
    schedule();
   }
  }
  if (MAJOR(real_root_dev) != RAMDISK_MAJOR
       || MINOR(real_root_dev) != 0) {
   error = change_root(real_root_dev,"/initrd");
   if (error)
    printk(KERN_ERR "Change root to /initrd: "
        "error %d\n",error);
  }
 }
#endif
}


static int init(void * unused)
{
 lock_kernel();                                   //内核加锁
 do_basic_setup();                          //做基本的配置,在具体函数体内


 prepare_namespace();                   //解析名字空间


 /*
  * Ok, we have completed the initial bootup, and
  * we're essentially up and running. Get rid of the
  * initmem segments and start the user-mode stuff..
  */
 free_initmem();            //释放初始化内存空间,最初启动时要开辟内存空间,进行初始化,做完后要释放这段内存空间
 unlock_kernel();              //解锁内核
 if (open("/dev/console", O_RDWR, 0) < 0)                            //打开控制台串口程序
  printk("Warning: unable to open an initial console.\n");    //如果出错提示


 (void) dup(0);
 (void) dup(0);
 
 /*
  * We try each of these until one succeeds.
  *
  * The Bourne shell can be used instead of init if we are
  * trying to recover a really broken machine.
  */


 if (execute_command)                                                        //如果有执行命令,执行最初的进程
  execve(execute_command,argv_init,envp_init);        //到此就将init进程执行起来了,会调用/bin或是/sbin下的init进程进程创建后
 execve("/sbin/init",argv_init,envp_init);                              //只是一个外壳,还执行起来,这4个的相关内容全部执行一遍,sbin的优
 execve("/etc/init",argv_init,envp_init);                               //先级最高,/bin/sh里的shell程序启动后会自动进入init进程
 execve("/bin/init",argv_init,envp_init);
 execve("/bin/sh",argv_init,envp_init);
 panic("No init found.  Try passing init= option to kernel.");
}

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
6
关闭 站长推荐上一条 /3 下一条