作为一个微电子专业的IC learner,这个学期也有一门课:《微电子器件》,今天我就来聊聊基本的器件:CMOS器件及其电路。在后面会聊聊锁存器和触发器。
今天的主要内容如下所示:
·MOS晶体管结构与工作原理简述
·CMOS单元电路与版图
·CMOS门电路
·CMOS的功耗表示
老实说,CMOS比较偏微电子器件,微电子器件还真难...这里我就说一些做数字设计或许要了解的东西吧(以后要是有必要,会补充)。
1、MOS晶体管结构与工作原理简述
我们或多或少知道,晶体管在数字电路中的主要作用就是一个电子开关,通过电压或者电流,控制这个“开关”开还是关。晶体管大概有两种分类:一种是双极性晶体管(BJT,bipolar junction transistor),另外一种是金属-氧化物-半导体场效应晶体管(MOSFET或者MOS,metal-oxide-semiconductor field effect transistor)。我们这里主要来聊聊MOS了,那个BJT在现在数字IC设计中已经不是主流工艺了。
①MOS晶体管分为PMOS和NMOS,是哪一类MOS取决于衬底和掺杂浓度。至于是怎么形成的,这太复杂了,简单的三言两语说不清楚,这里干脆就不说了,我们直接来看他们的截面图和简单地讲解它们的工作原理好了(以下均以NMOS为例)。
NMOS晶体管的横截面结构如下所示:
最底层是硅晶元圆衬底(substrate)(Body Si那里),最顶上是导电的栅极(gate),中间是二氧化硅构成的绝缘层。在过去栅极是由金属构成的,因此叫做金属-氧化物-半导体,现在的栅极使用的是多晶硅(poly)。MOS结构中,金属(多晶硅)与半导体衬底之间的二氧化硅会形成一个电容。
好吧,上面那一段看不懂也没关系,也不重要,需要你记住的是,上述的NMOS晶体管中,衬底是P型的,衬底上有两个n型的掺杂区域分别称为源极(Source)和漏极(Drain)(其实你把左边定义为漏而右边定义为源也没有问题,因为这个时候这个器件是对称的,在连接电源和地之后,S和D才真正确定),中间最上面的称为栅极(Gate),这就是NMOS的三个电极了(实际上的MOS是一个4端器件,它的衬底也是一个端)。下面来说一下他们怎么工作。
前面我们说了,晶体管的作用就是大致就是一个开关,在电流或者电压的控制下进行开和关,对于NMOS晶体管,我们现在给它加上电压,让它开始工作:
如上左图所示,加上电压后,所谓的源极,就相当于电子的源头;所谓的漏极,就相当于漏出电子的开口;而中间的栅极,就像控制开关一样:一方面通过控制在栅极施加的高电平电压,使源漏之间出现沟道,电子通过沟道从源极流向漏极,电流的方向也就是从漏到源了,从而进行导电,也就是“开关”打开的的时候(由于是形成的N沟道,也就是电子导电,因此成为N型CMOS)。另一方面再通过控制在栅极施加低电平电压,让沟道关断,因此就源漏之间就关断了,也就是“开关”关断的时候。上面就是NMOS的结构和工作流程了。(PMOS的工作流程恰好相反:通过控制在栅极施加的低电平电压,进行打开,而通过控制在栅极施加高电平电压,让沟道关断。)
注意:栅极的电压达到一定数值时,沟道才会形成,沟道形成时的电压称为阈值电压(Vth)。
②下面我们来看一下I-V特性曲线(注意这两个称呼,一个是转移特性曲线,一个是输出特性曲线):
在前面我们知道,对于NMOS,源极(S)是接地的,漏极(D)是接数字电源的,在工作的时候,一般Vds是不变的,然后根据栅极(G)上的电压决定沟道是否导通。工作的时候,Vg的值(也就是输入信号的电压值)是一个定值,要么高电平(可能有波动),要么是低电平,从这里我们也知道NMOS工作的时候,是有电流从电源(VDD)流到地(GND)的(也就是从D流到S的),在电源电压不变的时候,这个电流随着栅极上的电压增大而增大。
③接着我们看看MOS的内部自个形成的电容(寄生电容),如下图所示:
主要分为:
(1)栅和沟道之间的氧化层电容C1;
(2)衬底和沟道之间的耗尽层电容C2;
(3)多晶硅栅与源和漏的交叠而产生的电容C3 和C4;
(4)源/漏区与衬底之间的结电容C5与C6。
好吧,其实这些个MOS这个电容我们看看就好了,毕竟我们不是做器件的。
2、CMOS单元电路与版图
在现在工艺中,我们主要使用的是成为CMOS(互补型半导体,Complementary MOS)的工艺,这种工艺主要就是把PMOS和NMOS这两类晶体管构成一个单元,称为CMOS单元或者反相器单元,其结构把PMOS和NMOS同时集成在一个晶元上然后栅极相连,漏极相连,下面是它的结构图(关于电路符号和功能将在后面讲):
在上图中,左边是NMOS,右边是PMOS。A是共连栅极输入,Y是共连漏极输出,VDD连接PMOS的源极,GND连接GND。
文章评论(0条评论)
登录后参与讨论