13:多时域设计中,如何处理信号跨时域?
不同的时钟域之间信号通信时需要进行同步处理,这样可以防止新时钟域中第一级触发器的亚稳态信号对下级逻辑造成影响。
信号跨时钟域同步:当单个信号跨时钟域时,可以采用两级触发器来同步;数据或地址总线跨时钟域时可以采用异步FIFO来实现时钟同步;第三种方法就是采用握手信号。
14:说说静态、动态时序模拟的优缺点?
静态时序分析是采用穷尽分析方法来提取出整个电路存在的所有时序路径,计算信号在这些路径上的传播延时,检查信号的建立和保持时间是否满足时序要求,通过对最大路径延时和最小路径延时的分析,找出违背时序约束的错误。它不需要输入向量就能穷尽所有的路径,且运行速度很快、占用内存较少,不仅可以对芯片设计进行全面的时序功能检
查,而且还可利用时序分析的结果来优化设计,因此静态时序分析已经越来越多地被用到数字集成电路设计的验证中。
动态时序模拟就是通常的仿真,因为不可能产生完备的测试向量,覆盖门级网表中的每一条路径。因此在动态时序分析中,无法暴露一些路径上可能存在的时序问题;13:什么是竞争与冒险现象?怎样判断?如何消除?
在组合电路中,某一输入变量经过不同途径传输后,到达电路中某一汇合点的时间有先有后,这种现象称竞争;由于竞争而使电路输出发生瞬时错误的现象叫做冒险。(也就是由于竞争产生的毛刺叫做冒险)。
判断方法:代数法(如果布尔式中有相反的信号则可能产生竞争和冒险现象);卡诺图:有两个相切的卡诺圈并且相切处没有被其他卡诺圈包围,就有可能出现竞争冒险;实验法:示波器观测;
解决方法:1:加滤波电容,消除毛刺的影响;2:加选通信号,避开毛刺;3:增加冗余项消除逻辑冒险。
门电路两个输入信号同时向相反的逻辑电平跳变称为竞争;
由于竞争而在电路的输出端可能产生尖峰脉冲的现象称为竞争冒险。
如果逻辑函数在一定条件下可以化简成Y=A+A’或Y=AA’则可以判断存在竞争冒险现象(只是一个变量变化的情况)。
消除方法,接入滤波电容,引入选通脉冲,增加冗余逻辑
15:MOORE 与 MEELEY状态机的特征?
Moore 状态机的输出仅与当前状态值有关, 且只在时钟边沿到来时才会有状态变化。
Mealy 状态机的输出不仅与当前状态值有关, 而且与当前输入值有关。
16:SRAM,FALSH MEMORY,DRAM,SSRAM及SDRAM的区别?
SRAM:静态随机存储器,存取速度快,但容量小,掉电后数据会丢失,不像DRAM 需要不停的REFRESH,制造成本较高,通常用来作为快取(CACHE) 记忆体使用。
FLASH:闪存,存取速度慢,容量大,掉电后数据不会丢失
DRAM:动态随机存储器,必须不断的重新的加强(REFRESHED) 电位差量,否则电位差将降低至无法有足够的能量表现每一个记忆单位处于何种状态。价格比SRAM便宜,但访问速度较慢,耗电量较大,常用作计算机的内存使用。
SSRAM:即同步静态随机存取存储器。对于SSRAM的所有访问都在时钟的上升/下降沿启动。地址、数据输入和其它控制信号均于时钟信号相关。
SDRAM:即同步动态随机存取存储器。
17:如何防止亚稳态?
亚稳态是指触发器无法在某个规定时间段内达到一个可确认的状态。当一个触发器进入亚稳态时,既无法预测该单元的输出电平,也无法预测何时输出才能稳定在某个正确的电平上。在这个稳定期间,触发器输出一些中间级电平,或者可能处于振荡状态,并且这种无用的输出电平可以沿信号通道上的各个触发器级联式传播下去。
解决方法:
1 降低系统时钟频率
2 用反应更快的FF
3 引入同步机制,防止亚稳态传播(可以采用前面说的加两级触发器)。
4 改善时钟质量,用边沿变化快速的时钟信号
18、解释latch-up现象和Antenna effect及其预防措施.(科广试题)
在芯片生产过程中,暴露的金属线或者多晶硅(polysilicon)等导体,就象是一根根天线,会收集电荷(如等离子刻蚀产生的带电粒子)导致电位升高。天线越长,收集的电荷也就越多,电压就越高。若这片导体碰巧只接了MOS 的栅,那么高电压就可能把薄栅氧化层击穿,使电路失效,这种现象我们称之为“天线效应”。随着工艺技术的发展,栅的尺寸越来越小,金属的层数越来越多,发生天线效应的可能性就越大
19、什么叫短窄沟效应? (科广试题)
当JFET或MESFET沟道较短,<1um的情况下,这样的器件沟道内电场很高,载流子民饱合速度通过沟道,因而器件的工作速度得以提高,载流子漂移速度,通常用分段来描述,认为电场小于某一临界电场时,漂移速度与近似与电场强成正比,迁移率是常数,当电场高于临界时,速度饱和是常数。所以在短沟道中,速度是饱和的,漏极电流方程也发生了变化,,这种由有况下饱和电流不是由于沟道夹断引起的而是由于速度饱和。
窄沟道效应是由于沟道宽度方向边缘上表面耗尽区的侧向扩散,栅电极上的正电荷发出的电场线除大部分终止于耗尽区外还终止于侧向扩散区,是阈值电压上升。
20、什么是NMOS、PMOS、CMOS?什么是增强型、耗尽型?什么是PNP、NPN?他们有什么差别?(仕兰微面试题目)
MOS场效应管即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。它也分N沟道管和P沟道管,符号如图1所示。通常是将衬底(基板)与源极S接在一起。根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。
PNP与NPN的区别在表面上是以PN结的方向来定义的,实际上是以三极管的结构材料来区分的。PNP是两边的棒料是镓,中间的是硅。镓是第三主族的元素,其核外为三个电子,硅是第四主族的元素,其核外有四个电子,这样在两个PN的方向上的顺序是P-N-N的关系;相反NPN是两边的材料是硅,中间的是镓,形成的PN结顺序为N-P-N的关系。
顺便说明:P的意思是在PN结上缺少电子,以空穴为主导电的材料,也叫P型材料;N的意思是在PN结上有多余的电子,以电子为主导电的材料,也叫N型材料。
21:系统最高速度计算(最快时钟频率)和流水线设计思想:
同步电路的速度是指同步系统时钟的速度,同步时钟愈快,电路处理数据的时间间隔越短,电路在单位时间内处理的数据量就愈大。假设Tco是触发器的输入数据被时钟打入到触发器到数据到达触发器输出端的延时时间;Tdelay是组合逻辑的延时;Tsetup是D触发器的建立时间。假设数据已被时钟打入D触发器,那么数据到达第一个触发器的Q输出端需要的延时时间是Tco,经过组合逻辑的延时时间为Tdelay,然后到达第二个触发器的D端,要希望时钟能在第二个触发器再次被稳定地打入触发器,则时钟的延迟必须大于Tco+Tdelay+Tsetup,也就是说最小的时钟周期Tmin =Tco+Tdelay+Tsetup,即最快的时钟频率Fmax =1/Tmin。FPGA开发软件也是通过这种方法来计算系统最高运行速度Fmax。因为Tco和Tsetup是由具体的器件工艺决定的,故设计电路时只能改变组合逻辑的延迟时间Tdelay,所以说缩短触发器间组合逻辑的延时时间是提高同步电路速度的关键所在。由于一般同步电路都大于一级锁存,而要使电路稳定工作,时钟周期必须满足最大延时要求。故只有缩短最长延时路径,才能提高电路的工作频率。可以将较大的组合逻辑分解为较小的N块,通过适当的方法平均分配组合逻辑,然后在中间插入触发器,并和原触发器使用相同的时钟,就可以避免在两个触发器之间出现过大的延时,消除速度瓶颈,这样可以提高电路的工作频率。这就是所谓"流水线"技术的基本设计思想,即原设计速度受限部分用一个时钟周期实现,采用流水线技术插入触发器后,可用N个时钟周期实现,因此系统的工作速度可以加快,吞吐量加大。注意,流水线设计会在原数据通路上加入延时,另外硬件面积也会稍有增加。
文章评论(0条评论)
登录后参与讨论