随着iPad,iPhone的风靡全球,电容屏必将引领时尚!电容屏以他的超强灵敏度,多点触摸功能,以及手指直接操作特点受到潮流一族的热烈追捧。基于以上特点他的游戏体验感受将更加真切。操作界面以及操作方法更加人性化和个性化。由于这项技术还很新,很多初入行的朋友经常会问到电容屏的种类,以及区别之类的问题。甚者有一些初涉此行的朋友只知道有电容屏,却不知道还有手势和多指之分;自电容和互电容之分!
投射电容屏触摸检测原理
投射电容屏可分为自电容屏和互电容屏两种类型。在玻璃表面用ITO(一种透明的导电材料)制作成横向与纵向电极阵列,这些横向和纵向的电极分别与地构成电容,这个电容就是通常所说的自电容,也就是电极对地的电容。当手指触摸到电容屏时,手指的电容将会叠加到屏体电容上,使屏体电容量增加。
在触摸检测时,自电容屏依次分别检测横向与纵向电极阵列,根据触摸前后电容的变化,分别确定横向坐标和纵向坐标,然后组合成平面的触摸坐标。自电容的扫描方式,相当于把触摸屏上的触摸点分别投影到X轴和Y轴方向,然后分别在X轴和Y轴方向计算出坐标,最后组合成触摸点的坐标。
如果是单点触摸,则在X轴和Y轴方向的投影都是唯一的,组合出的坐标也是唯一的;如果在触摸屏上有两点触摸并且这两点不在同一X方向或者同一Y方向,则在X和Y方向分别有两个投影,则组合出4个坐标。显然,只有两个坐标是真实的,另外两个就是俗称的”鬼点”。因此,自电容屏无法实现真正的多点触摸。
互电容屏也是在玻璃表面用ITO制作横向电极与纵向电极,它与自电容屏的区别在于,两组电极交叉的地方将会形成电容,也即这两组电极分别构成了电容的两极。当手指触摸到电容屏时,影响了触摸点附近两个电极之间的耦合,从而改变了这两个电极之间的电容量。检测互电容大小时,横向的电极依次发出激励信号,纵向的所有电极同时接收信号,这样可以得到所有横向和纵向电极交汇点的电容值大小,即整个触摸屏的二维平面的电容大小。根据触摸屏二维电容变化量数据,可以计算出每一个触摸点的坐标。因此,屏上即使有多个触摸点,也能计算出每个触摸点的真实坐标。
图1、 自电容鬼影的产生机理。
CYPRESS互电容解决方案:
CYPRESS 在电容屏控制芯片上投入巨大。经历了第一代的单点触摸,到后来的支持手势模式多点触摸,到现在的能准确定位的多点触摸。cypress掌握了电容屏领域的多向核心技术和专利。CY8CTMA3XX系列芯片已经被国际一线品牌广泛利用:如MOTO,BLACKBARRY,Qualcomm等。
文章评论(0条评论)
登录后参与讨论