原创 便携式无线产品的电源选择

2008-4-26 10:38 2164 7 9 分类: 通信

   


        在做硬件系统设计时,需要选择正确的电源供电芯片,无论是设计消费数码电子还是无线传感设备,需要权衡好产品的各个功能需求。在对噪声抑制、耗电量、压降、和电源电压电流等指标做出评估和划定优先级后,才可以进行电源IC的选择。
  每个信号路径需要“干净”的电源。电源管理是系统设计的最后部分。图1显示了如何为信号路径供电的实例系统。


3437_26_1.gif


      本人目前设计一个需要超低功耗的无线产品,一个3AH的电池要能工作5-6年,这个需要整个通信机制需要有省电的功能,也需要产品本身需要有超低功耗的能力,一个无线产品需要具有超低功耗需要从产品的几个构成部分来分析:


        1)电源部分


        2)RF部分


        3)CPU部分


        4)其他部分


      这里结合我的工作做对电源部分的分析:


一、选择电源芯片原则:


        1)选择工艺成熟,产品质量好,性价比好的厂家产品


         2)选择工作频率高的产品,降低周围器件,降低成本。


         3)用封装小的,但要考虑输出电流的大小,一般都是小封装小电流,大封装大电流


          4)选择技术支持好的厂家,特别是小公司选择电源器件时要注意,小公司别人不理睬你!!!


           5)选择资料齐全的,最好有中文的,样品可以申请的,最好有免费的,供货周期短的,最好不 要老停产的。


          以上是从大的层面来做分析,包括设计和采购等方面来考虑。


         从技术要求的层面来分析,


        一、LDO 器件选择:


        LDO选择4个要素:压差、噪声、静态电流、共模抑制比。


       仅仅从省电来说,主要看静态电流,有的LDO静态电流很小,1UA左右,就是LDO工作时,自身的耗电,这个参数在省电中很关键,越小肯定越好,但不可能为0,LDO的耗电有两个指标:一个为静态电流,一个为SET_OFF电流,要区分哦!!还有压差,这个好理解,压差为0就是很理想的LDO。


       我现在用的是S-1206系列,日本的,NND,用日货,没有办法,SOT23,路过的朋友介绍一个国货给我,质量要好的,还有R1180X系列,好像也是鬼子的。以上都是5ua以下的IQ值。


         但是做RF的LDO,就需要考虑:噪声抑制了,因为RF这玩意对噪声的敏感度就好像狗对大便一样敏感,不过现在狗吃的比人好了!!!!


电源抑制比PSRR (Power supply ripple rejection ratio))是反映输出和输入频率相同的条件下,LDO输出对输入纹波抑制能力的交流参数。和噪声(Noise)不同,噪声通常是指在10Hz至100kHz频率范围内,LDO在一定输入电压下其输出电压噪声的均方值(RMS),PSRR的单位是dB,公式如下:PSRR=20 log(△vin/△vout)
电源影响信号路径性能
  并不意外的是,电源影响模拟信号完整性,这最终会影响整体的系统性能。提高信号路径性能的一种简单方法是选择正确的电源。在选择电源时,影响模拟信号路径性能的一个关键参数是电源线上的噪声或纹波。电源线上的噪声或纹波可以耦合到运算放大器的输出中,增加锁相环(PLL)或压控振荡器(VCO)的抖动,或者降低ADC的SNR。低噪声和低纹波的电源还能改善信号路径性能。
  电源线上的噪声或纹波的来源具有多样性。在系统内的高速数据和高频信号本身会产生噪声,PCB的印制线和连接线如果设计不当,可以形成发射天线的效应。数字IC,例如微控制器和现场可编程门阵列(FPGA)以及复杂可编程逻辑器件(CPLD)具有很快的边沿跳变速度,电流的大小变化很大,将产生电磁干扰辐射到系统中。IC硅片在内部产生热噪声,这是由于在温度高于绝对0摄氏度时分子的随机运动和碰撞产生的。
  有三种常用的方法来使信号路径中的噪声和纹波最小:非常仔细的系统PCB布局、恰当的电源旁路处理以及正确的电源选择。尽管PCB的具体设计取决于系统,但就一般而言,PCB的布局需要考虑包括正确的器件布局、使信号路径连接线的长度最小以及采用实体的地等。
  对电源轨进行旁路处理是一种常用的方法,这种方法通常在模拟IC产品手册中被推荐用于滤出噪声。信号路径IC可以具有分离的模拟、数字和PLL电源输入,建议每个采用自己独立的旁路处理。PLL电源和模拟电源对噪声和纹波最敏感。旁路电容、阻容(RC)滤波器以及EMI抑制滤波器使进入信号路径的电源噪声最小化。
  正确的电源选择可以降低对信号路径IC的噪声和纹波影响。在选择一种电源时,设计师首先在开关变换器和线性稳压器之间作一个基本选择。开关转换器提供较高的频率,更高的频率意味着较低的整体系统功耗。线性稳压器提供一种易于使用的解决方案,同时降低电源轨的噪声/纹波。使用线性稳压器降低噪声和纹波可以改善信号路径性能。


3437_26_2.gif


    毫无疑问,在便携式无线产品里,即需要自身工作耗电电流小的,又需要PSRR大的LDO,但是目前市面上的LDO产品,能兼顾到这两个指标的产品很少,本人找到一个S1167的LDO,工作自身耗电为9UA,PSRR为70dB,应该说是比较兼顾这两个指标的,但是是日本货,NND,没有办法呀!!!路过的朋友告诉我一个国货给我呀!!!!!!


     单单是考虑到PSRR,而IQ在45左右都无所谓的话,用AS1361是不错的,PSRR可到90dB以上。


     二、DC-DC电源选择


     对于DC-DC来说,主要考虑转换的效率,纹波,输入输出电压等。


    在选择DC/DC变换器时,电路设计要注意输出电流、高效率、小型化,输出电压要求:
1. 如需求的输出电流较小,可选择FET内置型;输出电流需要较大时,选择外接FET类型。
2. 关于效率有以下考虑:如果需优先考虑重负荷时的纹波电压及消除噪音,可选择PWM控制型;如果同时亦需重视低负荷时的效率,则可选择PFM/PWM切换控制型。
3. 如要求小型化,则可选择能使用小型线圈的高频产品。
4. 在输出电压方面,如果输出电压需要达到固定电压以上,或需要不固定的输出电压时,刚可选择输出可变的VDD/VOUT分离型产品。


  DC-DC工作方式PFM与PWM比较 :
       PWM控制、PFM控制和PWM/PFM切换控制模式这三种控制方式各有各的优点与缺点:
DC/DC变换器是通过与内部频率同步开关进行升压或降压,通过变化开关次数进行控制,从而得到与设定电压相同的输出电压。


       PFM控制时,当输出电压达到在设定电压以上时即会停止开关,在下降到设定电压前,DC/DC变换器不会进行任何操作。但如果输出电压下降到设定电压以下,DC/DC变换器会再次开始开关,使输出电压达到设定电压。PWM控制也是与频率同步进行开关,但是它会在达到升压设定值时,尽量减少流入线圈的电流,调整升压使其与设定电压保持一致。
与PWM相比,PFM的输出电流小,但是因PFM控制的DC/DC变换器在达到设定电压以上时就会停止动作,所以消耗的电流就会变得很小。因此,消耗电流的减少可改进低负荷时的效率。PWM在低负荷时虽然效率较逊色,但是因其纹波电压小,且开关频率固定,所以噪声滤波器设计比较容易,消除噪声也较简单。

      若需同时具备PFM与PWM的优点的话,可选择PWM/PFM切换控制式DC/DC变换器。此功能是在重负荷时由PWM控制,低负荷时自动切换到PFM控制,即在一款产品中同时具备PWM的优点与PFM的优点。在备有待机模式的系统中,采用PFM/PWM切换控制的产品能得到较高效率。


高频的优点 :
通过实际测试PWM与PFM/PWM的效率,可以发现PWM/PFM切换的产品在低负荷时的效率较高。至于高频方面,通过提高DC/DC变换器的频率,可以实现大电流化、小型化和高效率化。但是,必须注意的是只有通过线圈的特性配合才可以提高效率。因为当DC/DC变换器高频化后,由于开关次数随之增加的原因,开关损失也会增大,从而导致效率会有所降低。因此,效率是由线圈性能提升与开关损失增加两方面折衷决定的。通过使用高效率的产品,相对可使用较低电感值的线圈,可以使用小型线圈,即使使用的是小型线圈也可得到相同的效率及输出电流。


     外接器件选择:
     除了需要关注DC/DC变换器本身的特性外, 外接组件的选择也不能忽视。外接组件中的线圈、电容器和FET对于开关电源特性有着很大影响。这里所谓的特性是指输出电流、输出纹波电压及效率。
      线圈:如果需要追求高效率,最好选择直流电阻和电感值较小的线圈。但是,如果电感值较小的线圈用于频率较低的DC/DC,就会超过线圈的额定电流,线圈会产生磁饱和现象,引起效率恶化或损坏线圈。而且如果电感值太小,也会引起纹波电压变大。所以在选择线圈时,请注意流向线圈的电流不要超过线圈的额定电流。在选择线圈时,需要根据输出电流、DC/DC的频率、线圈的电感值、线圈的额定电流和纹波电压等条件综合决定。
     电容:输出电容的容量越大,纹波电压就越小。但是较大的容量也意味着较大的电容体积,所以请选择最适合的容量。
     三极管:作为外接的三极管,与双极晶体管相比,因FET的开关速度比较快,所以开关损耗会较小,效率会更高一些。


   DC-DC基本原理:


   DC-DC电源是一种比较新型的电源。它具有效率高,重量轻,可升、降压,输出功率大等优点。但是由于电路工作在开关状态,所以噪声比较大。 通过下图,我们来简单的说说降压型开关电源的工作原理。如图所示,电路由开关K(实际电路中为三极管或者场效应管),续流二极管D,储能电感L,滤波电容C等构成。当开关闭合时,电源通过开关K、电感L负载供电,并将部分电能储存在电感L以及电容C中。由于电感L的自感,在开关接通后,电流增大得比较缓慢,即输出不能立刻达到电源电压值。一定时间后,开关断开,由于电感L的自感作用(可以比较形象的认为电感中的电流有惯性作用),将保持电路中的电流不变,即从左往右继续流。这电流流过负载,从地线返回,流到续流二极管D的正极,经过二极管D返回电感L的左端,从而形成了一个回路。通过控制开关闭合跟断开的时间(即PWM——脉冲宽度调制),就可以控制输出电压。如果通过检测输出电压来控制开、关的时间,以保持输出电压不变,这就实现了稳压的目的。


 2006425133231416.jpg


<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />


在开关闭合期间,电感存储能量;在开关断开期间,电感释放能量,所以电感L叫做储能电感。二极管D在开关断开期间,负责给电感L提供电流通路,所以二极管D叫做续流二极管。

 在实际的开关电源中,开关K由三极管或场效应管代替。当开关断开时,电流很小;当开关闭合时,电压很小,所以发热功率U×I就会很小。这就是开关电源效率高的原因。


      升压式DC/DC变换器原理:


      升压式DC/DC变换器主要用于输出电流较小的场合,只要采用1~2节电池便可获得3~12V工作电压,工作电流可达几十毫安至几百毫安,其转换效率可达70%-80%。
  升压式DC/DC变换器的基本工作原理如图所示。


升压式DC/DC变换器基本工作原理图

  电路中的VT为开关管,当脉冲振荡器对双稳态电路置位(即Q端为1)时,VT导通,电感VT中流过电流并储存能量,直到电感电流在RS上的压降等于比较器设定的闽值电压时,双稳态电路复位,即Q端为0。此时VT截止,电感LT中储存的能量通过一极管VD1供给负载,同时对C进行充电。当负载电压要跌落时,电容C放电,这时输出端可获得高于输大端的稳定电压。输出的电压由分压器R1和R2分压后输入误差放大器,并与基准电压一起去控制脉冲宽度,由此而获得所需要的电压,即
200842514549218.gif


式中:VR——基准电压。
  升压式DC/DC变换器原理(下回分析):   


     DC-DC电路PCB设计要求:                   


     在设计印刷线路板时,设计工程师都会仔细思考铜线的走线方式和元器件的放置问题。如果没有充分考虑这两点,印刷线路板的效率、最大输出电流、输出纹波及其它特性都将会受到影响。产生这些影响的两个主要原因则是地线(GND、VSS)和电源线(+B、VCC、VDD)的连接,如果地线及电源线设计合理,电路将能正常地工作,获得较好的性能指标,否则会产生干扰、性能指标恶化等问题。本文就DC/DC转换器的设计,介绍一些通用的设计原则和地线连接方法。


0302A_DC_S9_S.JPG

图1:基于基本设计原则的布线模式。图2:升压电路的PCB设计示例。图3:降压电路的PCB设计示例。(点击放大该图)



设计原则


印制线走线方式和元器件的放置常常会影响电路的性能。以下提出了接地线设计的四个原则:

1. 用平面布线方式(planar pattern)接地;
2. 用平面布线方式接电源线;
3. 按电路图中的信号电流走向依序逐个放置元器件;
4. 实验获得的数据在应用时不应做任何调整,即使受板的尺寸或其它因素影响也应原样复制数据。


在设计中注意以上原则和要点,可以减少电路噪声和信号干扰。除了以上的基本原则外,在设计铜线走线模式和元件放置时应谨记以下两点:布线之间会产生杂散电容;连线长度会产生阻抗。在设计中注意线间杂散电容和缩短布线长度有利于消除噪声,减少辐射的产生。


在上面的几个基本原则基础上,设计工程师应注意以下几点(参见图1):
1. 根据电路原理图进行元件的布局,输入电流线和输出电流线应进行区别;
2. 合理放置元器件,保证它们之间的连线最短,以减少噪声;
3. 在电压变化很大和流过大电流的地方应小心设计以降低噪声;
4. 如果电路中采用了线圈和变压器,必须小心进行连接;
5. 电路设计时,将元器件放置在同一方向,便于回流焊接;
6. 元器件间或元器件焊盘和焊盘间必须保证0.5毫米以上的间隙,避免出现桥接。


PCB设计示例


a. 升压转换器模式布线方式


在升压转换器中,输出电容(CL)的位置比其它元件更重要,参考图2。建议在PCB设计时注意以下两点:
1. 将输出电容尽可能与IC靠近,尽量减小电流回路。
2. 在PCB板的背面用平面布线方法进行地线连接,板背面的接地线应通过一个过孔与板正面的接地线相连。


b. 降压转换器布线方式


在降压电路设计中,肖特基二极管的位置很关键,见图3所示。在PCB设计中注意以下几点:
1. 肖特基二极管接地点设计将影响输出的稳定性;
2. 肖特基二极管阴极连接线的长度将影响输出的稳定性;
3. PCB背面用大面积铜箔作为地,通过过孔与正面地连接。




 

PARTNER CONTENT

文章评论2条评论)

登录后参与讨论

用户1465862 2009-7-18 14:50

您好,看了你的文章,写得很好,希望可以交个朋友 QQ:945195404

用户900991 2009-5-19 20:36

学习了! 谢谢分享!
相关推荐阅读
用户468007 2013-06-18 00:07
**的ESD测试DTU模块
    做过好几年的EMC测试和整改,积累了点皮毛经验,觉得EMC中抗干扰最难处理的为ESD和FET,而EMI是EMC中最难的一项,今天说点ESD的事情。 ESD防护不外乎和我们治理洪水一样,...
用户468007 2013-05-16 23:09
轻松搞定RC522 13.56MHZ RFID
    以ST公司的高性能M3为主控芯片,控制恩智浦公司的高集成度读卡器芯片MF RC522,设计实现了遵循ISO/IEC 14443A协议的读卡模块。     MCU通过对读卡器芯片内寄存器...
用户468007 2009-09-04 16:17
CDMA无线链路中QPSK调制的测量与净化
无线信号的调制与解调是无线通信的核心技术之一,通信制式改变,调制与解调方式也将改变。CDMA IS-95与cdma2000 1x的主要差别之一就是前向链路的调制方式不同,前者采用BPSK(Binary...
用户468007 2009-09-04 14:47
全球CDMA频段分配情况及中国联通频点分配
常见的频段资源如下:Band Class 0 US CellularMS: 824.025 MHz – 848.985 MHz, BS: 869.025 MHz – 893.985 MHzBand C...
用户468007 2009-09-04 14:22
CDMA生产流程
一、组装CDMA手机PBA切割以后,经过作业员的目检焊接MIC等工序,最后组装成整机放入螺丝机中。 二、AUTO CDMA工程手机的参数调整,主要是通过手机发射接收和中频参数的调整来达到技术标准要求,...
用户468007 2009-01-07 23:39
这个ZIGBEE无线模块居然可以通信这么远!!!
      今天测试一下以前做出来的2.4GHZ ZIGBEE模块,居然可以从4楼传到17楼(隔着窗户)先前测试著名公司的模块,号称800米(也只是从4楼到8楼),看来我这个模块应该空旷距离有1000...
EE直播间
更多
我要评论
2
7
关闭 站长推荐上一条 /3 下一条