说说PWM控制DC-DC开关电源的那些事儿之一_绪论
1.1.1我国开关电源历程
从我国开关电源的发展过程可以了解国际开关电源发展的一个侧面,虽然一般说来,我国技术发展水平与国际先进水平平均有5~10年差距。 70年代起,我同在黑白电视机,中小型计算机中开始应用5V,20-200A,20kHZ AC-DC开关电源。80年代进入大规模生产和广泛应用阶段,并开发研究0.5~5MHz准谐振型软开关电源。80年代中,我国通信(如程注交换机)电源在AC-DC及DC-DC开关电源应用领域中所占比重还比较低。80年代末我国通信电源大规模更新换代,传统的铁磁稳压-整流电源和晶闸管被相控稳压电源为大功率(48V, 6kw) AC-DC开关电源(通信系统中常称为开关型整流器SMR)所取代;并开始在办公室自动化设备中得到应用。工业应用方面,在锅炉火焰控制,继电保护,激光,彩色TV,离子管灯丝发射电流调节,离子注射机,卤钨灯控制等系统中均有应用。
90年代我国又研制开发了一批新型专用开关电源,典型例子如下:
1.卫星开关电源。东方红三号通信卫星、风云一号、二号气象卫星均应用了开关电源。特点是:多路输出,不可维修性,要求长期不改变性能,设置冗余模块,可靠性高,EMC 满足空间环境条件,高效,轻小。
2.远程火箭控制系统的DC-DC开关电源,要求发射过程中高度可靠。
3. 1000kW牵引变流器4500V/1200A GTO门控250W开关电源。 4. 40kW固体脉冲激光器的软开关电源。用4台10kw全桥多谐振ZVS变换器并联。
5.焊机用双IGBT管正激车电压转换—脉定调制(ZVT-PWM)软开关电源。输出20kW, 500A,开关频率40kHZ,效率92%。特点是负载大范围变化频繁,工作环境恶劣。要求电源冲击电流小,动态特性好,负载不影响软开关性质。
6.变电所在流操作系统开关电源。供继电保护和自动装置及蓄电池充电用。代替晶闸管调压系统,输出10A,180~286V。主开关管用IGBT或功率MOSFET。
7.单相和三相高功率因数整流器(有源功率同数校正器)。 可以看出20~30年中,我国开关电源的应用领域和技术性能有很大进展,这与国家基础工业和国力增强有密切关系,也和国际先进开关电源技术影响有关。充分显示了中国电源技术人员的聪明才智和艰苦奋斗的创业精神。
90年代,中小型(500W以下)AC-DC和DC-DC开关电源的特点是:高频化(开关频率达300-400kHZ)以达到高功率密度,体小量轻;力求高效和高可靠;低成本;低输出电压(≤3V);AC输入端高功率同数等。在今后5年内仍然将沿这些方向发展。
从技术上看,几十年来推动开关电源性能和技术水平不断提高的主要标志是:
1.新型高频功率半导体器件的开发使实现开关电源高频化有了可能。 如功率MOSFET和IGBT已完全可代替功率晶体管和晶闸管,从而使中小型开关电源下作频率可达到400kHZ(AC-DC)和1MHZ(DC-DC)的水平。超快恢复功率二极管,MOSFE同步整流技术的开发也为高效低电压输出(例如3V)开关电源的研制有了可能。现正在探索研制耐高温的高性能碳化砖功率来导体器件。
2.软开关技术使高效率高频开关变换器的实现有了可能。 PWM开关电源按硬开关模式工作(开/关过程中电压卜降/上升和电流上升/下降波形有交叠),因而开关损耗大。开关电源高频化可以缩小体积重量,但开关损耗却更大了(功耗与频率成正比)。为此必须研究开关电比/电流波形个交更的技术,即所谓零电压(ZVS)/本电流(ZCS)开关技术,或称软开关技术(相对于PWM硬开关技术而言),小功率软开关电源效率可提高到80~85%。 70年代谐振开关电源奠定了软开关技术的基础。以后新的软开关技术不断涌现,如准谐振(80年代中)全桥移相ZVS-PWM,恒频ZVS-PWM/ZCS-PWM(80年代末)ZVS -PWM有源钳位;ZVT-PWM/ZCT-PWM(90年代初)全桥移相 ZV-ZCS-PWM(90年代中)等。我国已将最新软开关技术应用于6KW通信电源中,效率达93%。
3.控制技术研究的进展。如电流型控制及多环控制,电荷控制,一周期控制,功率因数控制,DSP控制;及相应专用集成控制芯片的研制成功等,使开关电源动态性能有很大提高,电路也大幅度简化。
4.有源功率因校正技术(APFC)的开发,提高了AC-DC开关电源功率因数。 由于输入端有整流——电容元件,AC-DC开关电源及一大类整流电源供电的电子设备(如逆变器,UPS)等的电网测功率因数仅为0.65,80年代用APFC技术后可提高到0.95 ~0.99,既治理了电网的谐波“污染”,又提高了开关电源的整体效率。单相APFC是DC -DC开关变换器拓扑和功率因数控制技术的具体应用,而三相APFC则是三相PWM整流开关拓扑和控制技术的结合。
5.磁性元件新型磁材料和新型变压器的开发。 如集成磁路,平面型磁芯,超薄型(Low profile)变压器;以及新型变压器如压电式,无磁芯印制电路(PCB)变压器等,使开关电源的尺寸重量都可减少许多。
6.新型电容器和EMI滤波器技术的进步,使开关电源小型化并提高了EMC性能。
7.微处理器监控和开关电源系统内部通信技术的应用,提高了电源系统的可靠性。
90年代末又提出了新型开关电源的研制开发,这也是新世纪开关电源的发展远景。如:用一级AC-DC开关变换器实现稳压或稳流,并具有功率因数校正功能,称为单管单级或4S高功率因数AC-DC开关变换器;输出1V, 50A的低电压大电流DC-DC变换器,又称电压调节模块VRM,以适应下一代超快速微处理器供电的需求;多通道(Multi-Channel或Multi-Phase)DC-DC开关变换器;网络服务器(Server)的开关电源可携带式电子设备的高频开关电源等。1.1.2开关电源技术发展动向1. 小型、薄型、轻量化由于电源轻、小、薄的关键使高频化,因此,国外目前都在致力于同步开发新型元器件,特别使改善二次整流管的损耗、变压器及电容小型化,并同时采用表面安装(SMT)技术在电路板两面布置元器件以确保开关电源的轻、小、薄。2. 高效率开关电源高频化使传统的PWM开关(硬开关)功耗加大,效率降低,噪声也增大了,达不到高频、高效的预期效益,因此,实现零电压导通、零电流关断的软开关技术将成为开关电源未来的主流。采用软开关技术可以使效率达到85%~88%。3. 高可靠性可用模块电源使用的元器件比线性工作电源多数十倍,因此,降低了可靠性。追求寿命的延长要从设计方面着手,而不是从使用方面着想。4. 模块化可用模块电源组成分布式电源系统;可以设计成N+1余电源系统,从而提高可靠性;可以做成插入式,实现热交换,从而在运行中出现故障时能快速更换模块插件;多台模块并联可实现大功率电源系统。此外,还可以在电源系统建成后,根据发展需要不断扩大容量。5. 低噪声开关电源又一缺点时噪声大,单纯追求电源高频化,噪声也随之增大。采用部分谐振变换技术,在原理上说明可以高频化,又可以低噪声。但谐振变换技术也有其难点,如果难准确地控制开关频率、谐振时增大了 元器件负荷、场效应管的寄生电容易引起短路损耗元器件热应力转向开关管等问题难以解决。6. 抗电磁干扰(EMI)当开关电源在高频下工作时,其噪声通过电源线产生对其他电子设备干扰,世界各国已有抗EMI的规范或标准。7. 电源系统的管理和控制 应用微处理器或微机集中控制和管理,可以及时反映开关电源环境的各种变化。中央处理单元实现智能控制,可自动诊断故障,减少维护工作量,确保正常运行。8. 计算机辅助设计(CAD) 利用计算机对开关电源进行CAD设计和模拟试验,十分有效,是最为快速经济的设计方法。9. 产品更新加快
目前开关电源产品要求输入电压通用(使用世界各国电网电压规模),输出电压范围扩大(入计算机和工作站需要增加3.3V这一挡电压,程控需要增加直流150V电压),输入端公里因数进一步提高,具有安全、过压保护等功能。
【文章缘由:去年曾经研究学习和做过开关电源,鉴于开关电源技术的无穷无尽,而博主时间和能力有限,现在主要是研究和学习微控制器,但是经过去年整整10个多月对于的开关电源专注研究和学习,博主有一些学习心得,或者说是经验吧,可以和大家一起交流下。希望与大家一起学习进步。不好,别喷啊!:)
本文未完,待续
2013-06-05
】
用户1748520 2014-10-29 18:38
chen_zs2012_704941858 2013-10-24 20:45
用户1552954 2013-10-24 18:20
用户1089389 2013-10-24 11:41
用户444579 2013-10-20 20:02
用户377235 2013-6-21 22:06