2.1 PWM开关电源的基本原理
开关电源的工作过程相当容易理解。在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断状态。在这两种状态中,加在功率晶体管上的伏安乘积总是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)。功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。
与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比是开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来生高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波形经过整流滤波后就得到直流输出电压。
控制器的主要目的式保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能模块电压参考和误差放大器,可以设计成与线性调节器相同。它们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压脉冲转换单元。
开关电源有两种主要的工作方式:正激式变换和升压式变换。尽管它们各部分的布置差别很少,但是工作过程相差很大,在特定的场合下个有优点。
正激式变换器的优点式:输出电压的纹波峰峰值比升压式变换器低,同时可以输出比较高的功率,正激式变换器可以提供数千瓦的功率。
升压式变换器中峰值电流较高,因此只适合功率不大于150W的应用场合,在所有拓扑中,这类变换器所用的元器件最小,因而在中小功率的应用场合中和流行。
开关电源的工作原理是:
1. 交流电源输入经整流滤波成直流;
2. 通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;
3. 开关变压器次级感应出高频电压,经整流滤波供给负载;
4. 输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的.
2.2 PWM开关电源的组成模块
3.1 设计思想
PWM开关电源在使用时比线性电源具有更高的效率和灵活性。我们可以在航空和自动化产品、仪器仪表、离线式产品中发现它们的踪影,它们通常应用于要求效率和多组电源电压输出的场合。开关电源的重要要比线性电源轻的多。因为对于相同的输出功率,开关电源的散热器要小的多。但是开关电源的成本较高,而且需要较长的时间开发。
所以PWM开关电源的的成本和效率是本设计的主要问题。基于这些问题,所以在本设计中,我们要注重成本的问题和设计电源的时间。
3.2方案论证
在开始设计开关电源时,主要考虑的是采用何种基本拓扑。开关电源设计中,拓扑类型与电源各个组成部分的布置有关。这种布置与电源可以在何种环境下安全工作以及可以给负载提供的最大功率密切相关。这也是设计中性能价格折中的关键点。
3.2.1方案选择
1. 方案一
正激式电路构成一大开关电源拓扑,其电路结构特点式功率管之后或变压器二次侧输出整流器之后紧跟LC滤波器。图3-1是一种简单正激式变换器电路,即所谓的Buck变换器。包括PWM开关电源的拓扑、主要波形和一些估计的参数。
电路的工作可以看作一个机械飞轮和单活塞发动机,电路的LC滤波器就是飞轮,存储从驱动器输出的脉冲功率。LC滤波器(扼流输入滤波器)的输入就是经过斩波以后的电压。LC滤波器平均了占空比调制的脉冲电压。LC滤波器的作用可用下式表示:
式中 D—占空比
通过控制电路改变占空比,即可保持输出电压恒定。Buck变换器之所以被称作降压式变换器,是因为它的输出电压必须低于输入电压。
我们可以把Buck电路的工作过程分成两个阶段。当开关导通时,输入电压加到LC滤波器的输入端,电感上的电流以固定斜率线性上升。
在这个阶段,电感存储能量。
输入的能量就存储在电感铁心材料的磁通中。
当开关断开时,由于电感上的电流不能突变,电感电流就通过二极管D续流,该二极管称为续流二极管,这样就实现了对原先流过开关管电流的续流,同时电感中存储的一部分能量向负载释放。续流电流环包括:二极管电感负载。
在这个阶段,电流波形时一条斜率为负的斜线。当开关再次导通时,二极管迅速关断,电流从输入电源和开关管流过。在开关导通前瞬间,电感上的电流 就是开关管通过的初始电流。
直流输出的负载电流在最大值和最小值之间波动。在典型应用中,电感电流的最大值为负载电流的150%,最小值为负载电流的50%。
2. 方案二
反激式变压器。反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能。
其拓扑、主要波形和一些估计参数,如图3-2。
3. 方案三
半桥电路。其拓扑、主要波形和一些估计参数,如图3-3。
文章评论(0条评论)
登录后参与讨论