MATLAB入门教程
1.MATLAB的基本知识
1-1、基本运算与函数
在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如:
>>
(5*2+1.3-0.8)*10/25
ans
=4.2000
MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。
小提示: ">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。
我们也可将上述运算式的结果设定给另一个变数x:
x =
(5*2+1.3-0.8)*10^2/25
x =
42
此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。
小提示: MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。
若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:
y =
sin(10)*exp(-0.3*4^2);
若要显示变数y的值,直接键入y即可:
>>y
y
=-0.0045
在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。
下表即为MATLAB常用的基本数学函数及三角函数:
小整理:MATLAB常用的基本数学函数
abs(x):纯量的绝对值或向量的长度
angle(z):复 数z的相角(Phase
angle)
sqrt(x):开平方
real(z):复数z的实部
imag(z):复数z的虚 部
conj(z):复数z的共轭复数
round(x):四舍五入至最近整数
fix(x):无论正负,舍去小数至最近整数
floor(x):地板函数,即舍去正小数至最近整数
ceil(x):天花板函数,即加入正小数至最近整数
rat(x):将实数x化为分数表示
rats(x):将实数x化为多项分数展开
sign(x):符号函数 (Signum function)。
当x<0时,sign(x)=-1;
当x=0时,sign(x)=0;
当x>0时,sign(x)=1。
> 小整理:MATLAB常用的三角函数
sin(x):正弦函数
cos(x):馀弦函数
tan(x):正切函数
asin(x):反正弦函数
acos(x):反馀弦函数
atan(x):反正切函数
atan2(x,y):四象限的反正切函数
sinh(x):超越正弦函数
cosh(x):超越馀弦函数
tanh(x):超越正切函数
asinh(x):反超越正弦函数
acosh(x):反超越馀弦函数
atanh(x):反超越正切函数
变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算:
x =
[1 3 5 2];
y =
2*x+1
y = 3
7 11 5
小提示:变数命名的规则
1.第一个字母必须是英文字母 2.字母间不可留空格 3.最多只能有19个字母,MATLAB会忽略多馀字母
我们可以随意更改、增加或删除向量的元素:
y(3)
= 2 % 更改第三个元素
y =3
7 2 5
y(6)
= 10 % 加入第六个元素
y = 3
7 2 5 0 10
y(4)
= [] % 删除第四个元素,
y = 3
7 2 0 10
在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算:
x(2)*3+y(4)
% 取出x的第二个元素和y的第四个元素来做运算
ans =
9
y(2:4)-1
% 取出y的第二至第四个元素来做运算
ans =
6 1 -1
在上例中,2:4代表一个由2、3、4组成的向量
若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):help linspace
小整理:MATLAB的查询命令
help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!) lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後 ,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。)
将列向量转置(Transpose)後,即可得到行向量(Column vector):
z =
x'
z =
4.0000
5.2000
6.4000
7.6000
8.8000
10.0000
不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:
length(z)
% z的元素个数
ans =
6
max(z)
% z的最大值
ans =
10
min(z)
% z的最小值
ans
= 4
小整理:适用於向量的常用函数有:
min(x):
向量x的元素的最小值
max(x):
向量x的元素的最大值
mean(x):
向量x的元素的平均值
median(x):
向量x的元素的中位数
std(x):
向量x的元素的标准差
diff(x):
向量x的相邻元素的差
sort(x):
对向量x的元素进行排序(Sorting)
length(x):
向量x的元素个数
norm(x):
向量x的欧氏(Euclidean)长度
sum(x):
向量x的元素总和
prod(x):
向量x的元素总乘积
cumsum(x):
向量x的累计元素总和
cumprod(x):
向量x的累计元素总乘积
dot(x,
y): 向量x和y的内 积
cross(x,
y): 向量x和y的外积 (大部份的向量函数也可适用於矩阵,详见下述。)
若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:
A =
[1 2 3 4; 5 6 7 8; 9 10 11 12];
A
=
1 2
3 4
5 6
7 8
9 10 11
12
同样地,我们可以对矩阵进行各种处理:
A(2,3)
= 5 % 改变位於第二列,第三行的元素值
A
=
1 2
3 4
5 6
5 8
9 10 11
12
B =
A(2,1:3) % 取出部份矩阵B
B = 5
6 5
A =
[A B'] % 将B转置後以行向量并入A
A
=
1 2
3 4 5
5 6
5 8 6
9 10 11
12 5
A(:,
2) = [] % 删除第二行(:代表所有列)
A
=
1 3
4 5
5 5
8 6
9 11 12
5
A =
[A; 4 3 2 1] % 加入第四列
A
=
1 3
4 5
5 5
8 6
9 11
12 5
4 3
2 1
A([1
4], = [] % 删除第一和第四列(:代表所有行)
A =
5 5
8 6
9 11
12 5
这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。
小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。
此外,若要重新安排矩阵的形状,可用reshape命令:
B =
reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数
B
=
5 8
9 12
5 6
11 5
小提示: A(就是将矩阵A每一列堆叠起来,成为一个行向量,而这也是MATLAB变数的内部储存方式。以前例而言,reshape(A, 8, 1)和A(同样都会产生一个8x1的矩阵。
MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:
x = sin(pi/3);
y = x^2; z = y*10,
z
=
7.5000
若一个数学运算是太长,可用三个句点将其延伸到下一行:
z =
10*sin(pi/3)* ...
sin(pi/3);
若要检视现存於工作空间(Workspace)的变数,可键入who:
who
Your
variables are:
testfile
x
这些是由使用者定义的变数。若要知道这些变数的详细资料,可键入:
whos
Name
Size Bytes Class
A 2x4
64 double array
B 4x2
64 double array
ans
1x1 8 double array
x 1x1
8 double array
y 1x1
8 double array
z 1x1
8 double array
Grand
total is 20 elements using 160 bytes
使用clear可以删除工作空间的变数:
clear
A
A
???
Undefined function or variable 'A'.
另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不 到,但使用者可直接取用,例如:
pi
ans =
3.1416
下表即为MATLAB常用到的永久常数。
小整理:MATLAB的永久常数 i或j:基本虚数单位
eps:系统的浮点(Floating-point)精确度
inf:无限大, 例如1/0 nan或NaN:非数值(Not
a number) ,例如0/0
pi:圆周率 p(=
3.1415926...)
realmax:系统所能表示的最大数值
realmin:系统所能表示的最小数值
nargin:
函数的输入引数个数
nargin:
函数的输出引数个数
1-2、重复命令
最简单的重复命令是for圈(for-loop),其基本形式为:
for 变数 = 矩阵;
运算式;
end
其中变数的值会被依次设定为矩阵的每一行,来执行介於for和end之间的运算式。因此,若无意外情况,运算式执行的次数会等於矩阵的行数。
举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence):
x =
zeros(1,6); % x是一个16的零矩阵
for i
= 1:6,
x(i)
= 1/i;
end
在上例中,矩阵x最初是一个16的零矩阵,在for圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。我们可用分数来显示此数列:
format
rat % 使用分数来表示数值
disp(x)
1 1/2
1/3 1/4 1/5 1/6
for圈可以是多层的,下例产生一个16的Hilbert矩阵h,其中为於第i列、第j行的元素为
h =
zeros(6);
for i
= 1:6,
for j
= 1:6,
h(i,j)
= 1/(i+j-1);
end
end
disp(h)
1 1/2
1/3 1/4 1/5 1/6
1/2
1/3 1/4 1/5 1/6 1/7
1/3
1/4 1/5 1/6 1/7 1/8
1/4
1/5 1/6 1/7 1/8 1/9
1/5
1/6 1/7 1/8 1/9 1/10
1/6
1/7 1/8 1/9 1/10 1/11
小提示:预先配置矩阵 在上面的例子,我们使用zeros来预先配置(Allocate)了一个适当大小的矩阵。若不预先配置矩阵,程式仍可执行,但此时MATLAB需要动态地增加(或减小)矩阵的大小,因而降低程式的执行效率。所以在使用一个矩阵时,若能在事前知道其大小,则最好先使用zeros或ones等命令来预先配置所需的记忆体(即矩阵)大小。
在下例中,for圈列出先前产生的Hilbert矩阵的每一行的平方和:
for i
= h,
disp(norm(i)^2);
% 印出每一行的平方和
end
1299/871
282/551
650/2343
524/2933
559/4431
831/8801
在上例中,每一次i的值就是矩阵h的一行,所以写出来的命令特别简洁。
令一个常用到的重复命令是while圈,其基本形式为:
while
条件式;
运算式;
end
也就是说,只要条件示成立,运算式就会一再被执行。例如先前产生调和数列的例子,我们可用while圈改写如下:
x =
zeros(1,6); % x是一个16的零矩阵
i =
1;
while
i <= 6,
x(i)
= 1/i;
i =
i+1;
end
format
short
1-3、逻辑命令
最简单的逻辑命令是if, ..., end,其基本形式为:
if 条件式;
运算式;
end
if
rand(1,1) > 0.5,
disp('Given
random number is greater than 0.5.');
end
Given
random number is greater than 0.5.
1-4、集合多个命令於一个M档案
若要一次执行大量的MATLAB命令,可将这些命令存放於一个副档名为m的档案,并在 MATLAB提示号下键入此档案的主档名即可。此种包含MATLAB命令的档案都以m为副档名,因此通称M档案(M-files)。例如一个名为test.m的M档案,包含一连串的MATLAB命令,那麽只要直接键入test,即可执行其所包含的命令:
pwd %
显示现在的目录
ans
=
D:\MATLAB5\bin
cd
c:\data\mlbook % 进入test.m所在的目录
type
test.m % 显示test.m的内容
%
This is my first test M-file.
%
Roger Jang, March 3, 1997
fprintf('Start
of test.m!\n');
for i
= 1:3,
fprintf('i
= %d ---> i^3 = %d\n', i, i^3);
end
fprintf('End
of test.m!\n');
test
% 执行test.m
Start
of test.m!
i = 1
---> i^3 = 1
i = 2
---> i^3 = 8
i = 3
---> i^3 = 27
End
of test.m!
小提示:第一注解行(H1 help line) test.m的前两行是注解,可以使程式易於了解与管理。特别要说明的是,第一注解行通常用来简短说明此M档案的功能,以便lookfor能以关键字比对的方式来找出此M档案。举例来说,test.m的第一注解行包含test这个字,因此如果键入lookfor test,MATLAB即可列出所有在第一注解行包含test的M档案,因而test.m也会被列名在内。
严格来说,M档案可再细分为命令集(Scripts)及函数(Functions)。前述的test.m即为命令集,其效用和将命令逐一输入完全一样,因此若在命令集可以直接使用工作空间的变数,而且在命令集中设定的变数,也都在工作空间中看得到。函数则需要用到输入引数(Input arguments)和输出引数(Output arguments)来传递资讯,这就像是C语言的函数,或是FORTRAN语言的副程序(Subroutines)。举例来说,若要计算一个正整数的阶乘 (Factorial),我们可以写一个如下的MATLAB函数并将之存档於fact.m:
function
output = fact(n)
%
FACT Calculate factorial of a given positive integer.
output
= 1;
for i
= 1:n,
output
= output*i;
end
其中fact是函数名,n是输入引数,output是输出引数,而i则是此函数用到的暂时变数。要使用此函数,直接键入函数名及适当输入引数值即可:
y =
fact(5)
y =
120
(当然,在执行fact之前,你必须先进入fact.m所在的目录。)在执行fact(5)时,
MATLAB会跳入一个下层的暂时工作空间(Temperary workspace),将变数n的值设定为5,然後进行各项函数的内部运算,所有内部运算所产生的变数(包含输入引数n、暂时变数i,以及输出引数output)都存在此暂时工作空间中。运算完毕後,MATLAB会将最後输出引数output的值设定给上层的变数y,并将清除此暂时工作空间及其所含的所有变数。换句话说,在呼叫函数时,你只能经由输入引数来控制函数的输入,经由输出引数来得到函数的输出,但所有的暂时变数都会随着函数的结束而消失,你并无法得到它们的值。
小提示:有关阶乘函数 前面(及後面)用到的阶乘函数只是纯粹用来说明MATLAB的函数观念。若实际要计算一个正整数n的阶乘(即n!)时,可直接写成prod(1:n),或是直接呼叫gamma函数:gamma(n-1)。
MATLAB的函数也可以是递式的(Recursive),也就是说,一个函数可以呼叫它本身。
举例来说,n! = n*(n-1)!,因此前面的阶乘函数可以改成递式的写法:
function
output = fact(n)
%
FACT Calculate factorial of a given positive integer recursively.
if n
== 1, % Terminating condition
output
= 1;
return;
end
output
= n*fact(n-1);
在写一个递函数时,一定要包含结束条件(Terminating condition),否则此函数将会一再呼叫自己,永远不会停止,直到电脑的记忆体被耗尽为止。以上例而言,n==1即满足结束条件,此时我们直接将output设为1,而不再呼叫此函数本身。
1-5、搜寻路径
在前一节中,test.m所在的目录是d:\mlbook。如果不先进入这个目录,MATLAB就找不到你要执行的M档案。如果希望MATLAB不论在何处都能执行test.m,那麽就必须将d:\mlbook加入MATLAB的搜寻路径(Search path)上。要检视MATLAB的搜寻路径,键入path即可:
path
MATLABPATH
d:\matlab5\toolbox\matlab\general
d:\matlab5\toolbox\matlab\ops
d:\matlab5\toolbox\matlab\lang
d:\matlab5\toolbox\matlab\elmat
d:\matlab5\toolbox\matlab\elfun
d:\matlab5\toolbox\matlab\specfun
d:\matlab5\toolbox\matlab\matfun
d:\matlab5\toolbox\matlab\datafun
d:\matlab5\toolbox\matlab\polyfun
d:\matlab5\toolbox\matlab\funfun
d:\matlab5\toolbox\matlab\sparfun
d:\matlab5\toolbox\matlab\graph2d
d:\matlab5\toolbox\matlab\graph3d
d:\matlab5\toolbox\matlab\specgraph
d:\matlab5\toolbox\matlab\graphics
d:\matlab5\toolbox\matlab\uitools
d:\matlab5\toolbox\matlab\strfun
d:\matlab5\toolbox\matlab\iofun
d:\matlab5\toolbox\matlab\timefun
d:\matlab5\toolbox\matlab\datatypes
d:\matlab5\toolbox\matlab\dde
d:\matlab5\toolbox\matlab\demos
d:\matlab5\toolbox\tour
d:\matlab5\toolbox\simulink\simulink
d:\matlab5\toolbox\simulink\blocks
d:\matlab5\toolbox\simulink\simdemos
d:\matlab5\toolbox\simulink\dee
d:\matlab5\toolbox\local
此搜寻路径会依已安装的工具箱(Toolboxes)不同而有所不同。要查询某一命令是在搜寻路径的何处,可用which命令:
which
expo
d:\matlab5\toolbox\matlab\demos\expo.m
很显然c:\data\mlbook并不在MATLAB的搜寻路径中,因此MATLAB找不到test.m这个M档案:
which
test
c:\data\mlbook\test.m
要将d:\mlbook加入MATLAB的搜寻路径,还是使用path命令:
path(path,
'c:\data\mlbook');
此时d:\mlbook已加入MATLAB搜寻路径(键入path试看看),因此MATLAB已经"看"得到
test.m:
which
test
c:\data\mlbook\test.m
现在我们就可以直接键入test,而不必先进入test.m所在的目录。
小提示:如何在其启动MATLAB时,自动设定所需的搜寻路径? 如果在每一次启动MATLAB後都要设定所需的搜寻路径,将是一件很麻烦的事。有两种方法,可以使MATLAB启动後 ,即可载入使用者定义的搜寻路径:
1.MATLAB的预设搜寻路径是定义在matlabrc.m(在c:\matlab之下,或是其他安装MATLAB 的主目录下),MATLAB每次启动後,即自动执行此档案。因此你可以直接修改matlabrc.m ,以加入新的目录於搜寻路径之中。
2.MATLAB在执行matlabrc.m时,同时也会在预设搜寻路径中寻找startup.m,若此档案存在,则执行其所含的命令。因此我们可将所有在MATLAB启动时必须执行的命令(包含更改搜寻路径的命令),放在此档案中。
每次MATLAB遇到一个命令(例如test)时,其处置程序为:
1.将test视为使用者定义的变数。
2.若test不是使用者定义的变数,将其视为永久常数 。
3.若test不是永久常数,检查其是否为目前工作目录下的M档案。
4.若不是,则由搜寻路径寻找是否有test.m的档案。
5.若在搜寻路径中找不到,则MATLAB会发出哔哔声并印出错误讯息。
以下介绍与MATLAB搜寻路径相关的各项命令。
1-6、资料的储存与载入
有些计算旷日废时,那麽我们通常希望能将计算所得的储存在档案中,以便将来可进行其他处理。MATLAB储存变数的基本命令是save,在不加任何选项(Options)时,save会将变数以二进制(Binary)的方式储存至副档名为mat的档案,如下述:
save:将工作空间的所有变数储存到名为matlab.mat的二进制档案。
save
filename:将工作空间的所有变数储存到名为filename.mat的二进制档案。 save filename x y z :将变数x、y、z储存到名为filename.mat的二进制档案。
以下为使用save命令的一个简例:
who %
列出工作空间的变数
Your
variables are:
B h j
y
ans i
x z
save
test B y % 将变数B与y储存至test.mat
dir %
列出现在目录中的档案
.
2plotxy.doc fact.m simulink.doc test.m ~$1basic.doc
..
3plotxyz.doc first.doc temp.doc test.mat
1basic.doc
book.dot go.m template.doc testfile.dat
delete
test.mat % 删除test.mat
以二进制的方式储存变数,通常档案会比较小,而且在载入时速度较快,但是就无法用普通的文书软体(例如pe2或记事本)看到档案内容。若想看到档案内容,则必须加上-ascii选项,详见下述:
save
filename x -ascii:将变数x以八位数存到名为filename的ASCII档案。
Save
filename x -ascii -double:将变数x以十六位数存到名为filename的ASCII档案。
另一个选项是-tab,可将同一列相邻的数目以定位键(Tab)隔开。
小提示:二进制和ASCII档案的比较 在save命令使用-ascii选项後,会有下列现象:save命令就不会在档案名称後加上mat的副档名。
因此以副档名mat结尾的档案通常是MATLAB的二进位资料档。
若非有特殊需要,我们应该尽量以二进制方式储存资料。
load命令可将档案载入以取得储存之变数:
load
filename:load会寻找名称为filename.mat的档案,并以二进制格式载入。若找不到filename.mat,则寻找名称为filename的档案,并以ASCII格式载入。load filename -ascii:load会寻找名称为filename的档案,并以ASCII格式载入。
若以ASCII格式载入,则变数名称即为档案名称(但不包含副档名)。若以二进制载入,则可保留原有的变数名称,如下例:
clear
all; % 清除工作空间中的变数
x = 1:10;
save
testfile.dat x -ascii % 将x以ASCII格式存至名为testfile.dat的档案
load
testfile.dat % 载入testfile.dat
who %
列出工作空间中的变数
Your
variables are:
testfile
x
注意在上述过程中,由於是以ASCII格式储存与载入,所以产生了一个与档案名称相同的变数testfile,此变数的值和原变数x完全相同。
1-7、结束MATLAB
有三种方法可以结束MATLAB:
1.键入exit
2.键入quit
3.直接关闭MATLAB的命令视窗(Command window)
数 值 函 数
N[expr]表达式的机器精度近似值
N[expr, n] 表达式的n位近似值,n为任意正整数
NSolve[lhs==rhs, var] 求方程数值解
NSolve[eqn, var, n] 求方程数值解,结果精度到n位
NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解
NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]
微分方程组数值解
FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找方程数值解
FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]
NSum[f, {i,imin,imax,di}] 数值求和,di为步长
NSum[f, {i,imin,imax,di}, {j,..},..]
多维函数求和
NProduct[f, {i, imin, imax, di}]函数求积
NIntegrate[f, {x, xmin, xmax}] 函数数值积分
优化函数:
FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最小值
FindMinimum[f, {x, xstart, xmin, xmax}]
ConstrainedMin[f,{inequ},{x,y,..}]
inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值
ConstrainedMax[f, {inequ}, {x, y,..}]同上
LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的
最小值,x,b,c为向量,m为矩阵
LatticeReduce[{v1,v2...}] 向量组vi的极小无关组
数据处理:
Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和
data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况
emp: Fit[{10.22,12,3.2,9.9},
{1, x, x^2,Sin[x]}, x]
Interpolation[data]对数据进行差值,
data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数
InterpolationOrder默认为3次,可修改
ListInterpolation[array]对离散数据插值,array可为n维
ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}]
FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]
以对应expr[xi,yi]的为数据进行插值
Fourier
对复数数据进行付氏变换
InverseFourier
对复数数据进行付氏逆变换
Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值
Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值
Select[list, crit] 将表中使得crit为True的元素选择出来
Count[list, pattern] 将表中匹配模式pattern的元素的个数
Sort
将表中元素按升序排列
Sort[list,p] 将表中元素按p[e1,e2]为True的顺序比较list
的任两个元素e1,e2,实际上Sort中默认p=Greater
集合论:
Union[list1,list2..] 表listi的并集并排序
Intersection[list1,list2..] 表listi的交集并排序
Complement[listall,list1,list2...]从全集listall中对listi的差集
九、虚数函数
Re[expr] 复数表达式的实部
Im[expr] 复数表达式的虚部
Abs[expr] 复数表达式的模
Arg[expr] 复数表达式的辐角
Conjugate[expr] 复数表达式的共轭
十、数的头及模式及其他操作
Integer _Integer 整数
Real _Real 实数
Complex _Complex 复数
Rational_Rational 有理数
(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]
规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*)
IntegerDigits[n,b,len] 数字n以b近制的前len个码元
RealDigits[x,b,len] 类上
FromDigits
的反函数
IntegerDigits
Rationalize[x,dx] 把实数x有理化成有理数,误差小于dx
Chop[expr, delta] 将expr中小于delta的部分去掉,dx默认为10^-10
Accuracy[x] 给出x小数部分位数,对于Pi,E等为无限大
Precision[x] 给出x有效数字位数,对于Pi,E等为无限大
SetAccuracy[expr, n] 设置expr显示时的小数部分位数
SetPrecision[expr, n] 设置expr显示时的有效数字位数
十一、区间函数
Interval[{min, max}] 区间[min, max](* Solve[3
x+2==Interval[{-2,5}],x]*)
IntervalMemberQ[interval, x]
x在区间内吗?
IntervalMemberQ[interval1,interval2]
区间2在区间1内吗?
IntervalUnion[intv1,intv2...]
区间的并
IntervalIntersection[intv1,intv2...]
区间的交
十二、矩阵操作
a.b.c 或 Dot[a, b,
c] 矩阵、向量、张量的点积
Inverse[m] 矩阵的逆
Transpose
矩阵的转置
Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换
Det[m] 矩阵的行列式
Eigenvalues[m] 特征值
Eigenvectors[m] 特征向量
Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}
LinearSolve[m, b] 解线性方程组m.x==b
NullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量
RowReduce[m] m化简为阶梯矩阵
Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是)
MatrixPower[mat, n] 阵mat自乘n次
Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩阵
Outer[Times,list1,list2]给出矩阵的外积
SingularValues[m] m的奇异值,结果为{u,w,v},
m=Conjugate[Transpose].DiagonalMatrix[w].v
PseudoInverse[m] m的广义逆
QRDecomposition[m] QR分解
SchurDecomposition[m] Schur分解
LUDecomposition[m] LU分解
Mathematica函数大全--运算符及特殊符号
一、运算符及特殊符号
Line1; 执行Line,不显示结果
Line1,line2 顺次执行Line1,2,并显示结果
?name 关于系统变量name的信息
??name 关于系统变量name的全部信息
!command 执行Dos命令
n! N的阶乘
!!filename 显示文件内容
<<filename 读入文件并执行
Expr>> filename 打开文件写
Expr>>>filename 打开文件从文件末写
() 结合率
[] 函数
{} 一个表
<*Math Fun*> 在c语言中使用math的函数
(*Note*) 程序的注释
#n 第n个参数
## 所有参数
rule& 把rule作用于后面的式子
% 前一次的输出
%% 倒数第二次的输出
%n 第n个输出
var::note 变量var的注释
"Astring " 字符串
Context ` 上下文
a+b 加
a-b 减
a*b或a b 乘
a/b 除
a^b 乘方
base^^num 以base为进位的数
lhs&&rhs 且
lhs||rhs 或
!lha 非
++,-- 自加1,自减1
+=,-=,*=,/= 同C语言
>,<,>=,<=,==,!= 逻辑判断(同c)
lhs=rhs 立即赋值
lhs:=rhs 建立动态赋值
lhs:>rhs 建立替换规则
lhs->rhs 建立替换规则
expr//funname 相当于filename[expr]
expr/.rule 将规则rule应用于expr
expr//.rule 将规则rule不断应用于expr知道不变为止
param_ 名为param的一个任意表达式(形式变量)
param__ 名为param的任意多个任意表达式(形式变量)
二、系统常数
Pi 3.1415....的无限精度数值
E 2.17828...的无限精度数值
Catalan 0.915966..卡塔兰常数
EulerGamma 0.5772....高斯常数
GoldenRatio 1.61803...黄金分割数
Degree Pi/180角度弧度换算
I 复数单位
Infinity 无穷大
-Infinity 负无穷大
ComplexInfinity 复无穷大
Indeterminate 不定式
三、代数计算
Expand[expr] 展开表达式
Factor[expr] 展开表达式
Simplify[expr] 化简表达式
FullSimplify[expr] 将特殊函数等也进行化简
PowerExpand[expr] 展开所有的幂次形式
ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开
FunctionExpand[expr] 化简expr中的特殊函数
Collect[expr, x] 合并同次项
Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项
Together[expr] 通分
Apart[expr] 部分分式展开
Apart[expr, var] 对var的部分分式展开
Cancel[expr] 约分
ExpandAll[expr] 展开表达式
ExpandAll[expr, patt] 展开表达式
FactorTerms[poly] 提出共有的数字因子
FactorTerms[poly, x] 提出与x无关的数字因子
FactorTerms[poly, {x1,x2...}] 提出与xi无关的数字因子
Coefficient[expr, form] 多项式expr中form的系数
Coefficient[expr, form, n] 多项式expr中form^n的系数
Exponent[expr, form] 表达式expr中form的最高指数
Numerator[expr] 表达式expr的分子
Denominator[expr] 表达式expr的分母
ExpandNumerator[expr] 展开expr的分子部分
ExpandDenominator[expr] 展开expr的分母部分
TrigExpand[expr] 展开表达式中的三角函数
TrigFactor[expr] 给出表达式中的三角函数因子
TrigFactorList[expr] 给出表达式中的三角函数因子的表
TrigReduce[expr] 对表达式中的三角函数化简
TrigToExp[expr] 三角到指数的转化
ExpToTrig[expr] 指数到三角的转化
RootReduce[expr]
ToRadicals[expr]
文章评论(0条评论)
登录后参与讨论