原创 DCT快速变换

2008-5-22 09:56 1979 5 5 分类: MCU/ 嵌入式

       DCT 变换是数字图像处理中重要的变换,很多重要的图像算法、图像应用都是基于DCT变换的,如JPEG图像编码方式。对于大尺寸的二维数值矩阵,倘若采用普通的DCT变换来进行,其所花费的时间将是让人难以忍受甚至无法达到实用。而要克服这一难点,DCT变换的快速算法无非是非常吸引人的。


就目前而言,DCT变换的快速算法无非有以下两种方式:


1.由于FFT算法的普便采用,直接利用FFT来实现DCT变换的快速算法相比来说就相对容易。但是此种方法也有不足:计算过程会涉及到复数的运算。由于 DCT变换前后的数据都是实数,计算过程中引入复数,而一对复数的加法相当于两对实数的加法,一对复数的乘法相当于四对实数的乘法和两对实数的加法,显然是增加了运算量,也给硬件存储提出了更高的要求。


2.直接在实数域进行DCT快速变换。显然,这种方法相比于前一种而言,计算量和硬件要求都要优于前者。


鉴于此,本文采用第二种方法来实现DCT变换的快速算法。

二、理论推导


  限于篇幅,在此不能罗列,具体推导过程可参见《DCT快速新算法及滤波器结构研究与子波变换域图像降噪研究》华南理工大学博士论文。


三、程序实现


DCT快速变换
考虑到DCT变换中的系数要重复计算,可使用查找表来提高运行的效率,只要开始DCT变换之前计算一次,DCT变换中就可以只查找而无需计算系数。

void initDCTParam(int deg)
{
// deg 为DCT变换数据长度的幂

if(bHasInit)
{
return; //不用再计算查找表
}

int total, halftotal, i, group, endstart, factor;

total = 1 << deg;

if(C != NULL) delete []C;

C = (double *)new double[total];

halftotal = total >> 1;

for(i=0; i < halftotal; i++)
C[total-i-1]=(double)(2*i+1);

for(group=0; group < deg-1; group++)
{

endstart="1" << (deg-1-group);

int len = endstart >> 1;

factor="1" << (group+1);

for(int j = 0;j < len; j++)
C[endstart-j-1] = factor*C[total-j-1];
}

for(i=1; i < total; i++)
C = 2.0*cos(C*PI/(total << 1)); ///C[0]空着,没使用

bHasInit="true";
}
DCT变换过程可分为两部分:前向追底和后向回根

前向追底:

void dct_forward(double *f,int deg)
{
// f中存储DCT数据

int i_deg, i_halfwing, total, wing, wings, winglen, halfwing;

double temp1,temp2;

total = 1 << deg;

for(i_deg = 0; i_deg < deg; i_deg++)
{
wings = 1 << i_deg;
winglen = total >> i_deg;
halfwing = winglen >> 1;
for(wing = 0; wing < wings; wing++)
{
for(i_halfwing = 0; i_halfwing < halfwing; i_halfwing++)
{
temp1 = f[wing*winglen+i_halfwing];
temp2 = f[(wing+1)*winglen-1-i_halfwing];
if(wing%2)
swap(temp1,temp2); // 交换temp1与temp2的值

f[wing*winglen+i_halfwing] = temp1+temp2;
f[(wing+1)*winglen-1-i_halfwing] =
(temp1-temp2)*C[winglen-1-i_halfwing];
}
}
}
}
后向回根:
void dct_backward(double *f,int deg)
{
// f中存储DCT数据

int total,i_deg,wing,wings,halfwing,winglen,i_halfwing,temp1,temp2;

total = 1 << deg;

for(i_deg = deg-1; i_deg >= 0; i_deg--)
{
wings = 1 << i_deg;
winglen = 1 << (deg-i_deg);

halfwing = winglen >> 1;

for(wing = 0; wing < wings; wing++)
{
for(i_halfwing = 0; i_halfwing < halfwing; i_halfwing++)
{
//f[i_halfwing+wing*winglen] = f[i_halfwing+wing*winglen];
if(i_halfwing == 0)
{
f[halfwing+wing*winglen+i_halfwing] =
0.5*f[halfwing+wing*winglen+i_halfwing];
}
else
{
temp1=bitrev(i_halfwing,deg-i_deg-1); // bitrev为位反序
temp2=bitrev(i_halfwing-1,deg-i_deg-1); // 第一参数为要变换的数
              // 第二参数为二进制长度
f[halfwing+wing*winglen+temp1] =
f[halfwing+wing*winglen+temp1]-f[halfwing+wing*winglen+temp2];
}
}
}
}
}

位反序函数如下:
int bitrev(int bi,int deg)
{
int j = 1, temp = 0, degnum, halfnum;

degnum = deg;

//if(deg<0) return 0;

if(deg == 0) return bi;

halfnum = 1 << (deg-1);

while(halfnum)
{
if(halfnum&bi)
temp += j;

j<<=1;

halfnum >>= 1;
}

return temp;
}
完整实现一维DCT变换:
void fdct_1D_no_param(double *f,int deg)
{
initDCTParam(deg);
dct_forward(f,deg);
dct_backward(f,deg);
fbitrev(f,deg); // 实现位反序排列
f[0] = 1/(sqrt(2.0))*f[0];
}

void fdct_1D(double *f,int deg)
{
fdct_1D_no_param(f,deg);
int total = 1 << deg;
double param = sqrt(2.0/total);
for(int i = 0; i < total; i++)
f = param*f;
}

利用一维DCT变换来实现二维DCT变换:
void fdct_2D(double *f,int deg_row,int deg_col)
{
int rows,cols,i_row,i_col;
double two_div_sqrtcolrow;
rows="1" << deg_row;
cols="1" << deg_col;
init2D_Param(rows,cols);
two_div_sqrtcolrow = 2.0/(sqrt(double(rows*cols)));

for(i_row = 0; i_row < rows; i_row++)
{
fdct_1D_no_param(f+i_row*cols,deg_col);
}

for(i_col = 0; i_col < cols; i_col++)
{
for(i_row = 0; i_row < rows; i_row++)
{
temp_2D[i_row] = f[i_row*cols+i_col];
}

fdct_1D_no_param(temp_2D, deg_row);

for(i_row = 0; i_row < rows; i_row++)
{
f[i_row*cols+i_col] = temp_2D[i_row]*two_div_sqrtcolrow;
}
}

bHasInit = false;
}


IDCT快速变换
初始化查找表:
void initIDCTParam(int deg)
{
if(bHasInit)
return; //不用再计算查找表

int total, halftotal, i, group, endstart, factor;
total = 1 << deg;

// if(C!=NULL) delete []C;
// C=(double *)new double[total];

// 由于正变换已经为C申请了空间,所以逆变换就需再申请空间了!

halftotal = total >> 1;

for(i = 0; i < halftotal; i++)
C[total-i-1] = (double)(2*i+1);

for(group = 0; group < deg-1; group++)
{
endstart = 1 << (deg-1-group);
int len = endstart>>1;
factor = 1 << (group+1);
for(int j = 0; j < len; j++)
C[endstart-j-1] = factor*C[total-j-1];
}

for(i = 1; i < total; i++)
C = 1.0/(2.0*cos(C*PI/(total << 1))); // C[0]空着没用

bHasInit="true";
}
IDCT变换过程也可分为两部分:前向追底和后向回根
前向追底
void idct_forward(double *F,int deg)
{
int total,i_deg,wing,wings,halfwing,winglen,i_halfwing,temp1,temp2;

total = 1 << deg;
for(i_deg = 0; i_deg < deg; i_deg++)
{
wings = 1 << i_deg;
winglen = 1 << (deg-i_deg);
halfwing = winglen >> 1;
for(wing = 0; wing < wings; wing++)
{
for(i_halfwing = halfwing-1; i_halfwing >= 0; i_halfwing--)
{
if(i_halfwing == 0)
{
F[halfwing+wing*winglen+i_halfwing] =
2.0*F[halfwing+wing*winglen+i_halfwing];
}
else
{
temp1 = bitrev(i_halfwing,deg-i_deg-1);
temp2 = bitrev(i_halfwing-1,deg-i_deg-1);
F[halfwing+wing*winglen+temp1] = F[halfwing+wing*winglen+temp1]
+F[halfwing+wing*winglen+temp2];
}
}
}
}
}
后向回根
void idct_backward(double *F, int deg)
{
int i_deg,i_halfwing,total,wing,wings,winglen,halfwing;

double temp1, temp2;
total = 1 << deg;
for(i_deg = deg-1; i_deg >= 0; i_deg--)
{
wings = 1 << i_deg;
winglen = total >> i_deg;
halfwing = winglen >> 1;
for(wing = 0; wing < wings; wing++)
{
for(i_halfwing = 0; i_halfwing < halfwing; i_halfwing++)
{
temp1 = F[wing*winglen+i_halfwing];
temp2 = F[(wing+1)*winglen-1-i_halfwing]*C[winglen-1-i_halfwing];
if(wing % 2)
{
F[wing*winglen+i_halfwing] = (temp1-temp2)*0.5;
F[(wing+1)*winglen-1-i_halfwing] = (temp1+temp2)*0.5;
}
else
{
F[wing*winglen+i_halfwing] = (temp1+temp2)*0.5;
F[(wing+1)*winglen-1-i_halfwing] = (temp1-temp2)*0.5;
}
}
}
}
}
完整实现一维IDCT变换:
void fidct_1D_no_param(double *F, int deg)
{
initIDCTParam(deg);
F[0] = F[0]*sqrt(2.0);
fbitrev(F, deg);
idct_forward(F, deg);
idct_backward(F, deg);
}

void fdct_1D(double *f, int deg)
{
fdct_1D_no_param(f, deg);
int total = 1 << deg;

double param = sqrt(2.0/total);
for(int i = 0; i < total; i++)
f = param*f;
}

利用一维IDCT变换来实现二维IDCT变换:
void fidct_2D(double *F, int deg_row, int deg_col)
{
int rows,cols,i_row,i_col;

double sqrtcolrow_div_two;
rows = 1 << deg_row;
cols = 1 << deg_col;
init2D_Param(rows,cols);
sqrtcolrow_div_two = (sqrt(double(rows*cols)))/2.0;

for(i_row = 0; i_row < rows; i_row++)
{
fidct_1D_no_param(F+i_row*cols,deg_col);
}

for(i_col = 0; i_col < cols; i_col++)
{
for(i_row = 0; i_row < rows; i_row++)
{
temp_2D[i_row] = F[i_row*cols+i_col];
}

fidct_1D_no_param(temp_2D, deg_row);
for(i_row = 0; i_row < rows; i_row++)
{
F[i_row*cols+i_col] = temp_2D[i_row]*sqrtcolrow_div_two;
}
}

bHasInit="false";
}

多线程的考量由于DCT变换要花费一定的时间,特别是在数据矩阵尺寸比较大的时候。此时,如果没有增加一个线程来执行DCT变换,操作界面可能因程序忙于DCT变换的计算而失去响应,所以,增加一个用来进行DCT变换的线程是十分必要的。
首先定义一个结构
typedef struct
{
int row;
int col;
double *data;
//double *data2;
//double *data3; // 在计算彩色图象的数据矩阵时,彩色图象用RGB三个分量

bool m_bfinished;

DWORD m_start,m_end; //以毫秒计,用来计算DCT变换所用的时间;
}RUNINFO;
DCT变换进程函数:
UINT ThreadProcfastDct(LPVOID pParam)
{
RUNINFO *pinfo = (RUNINFO*)pParam;
pinfo->m_start = ::GetTickCount();
fdct_2D((double *)pinfo->data, GetTwoIndex(pinfo->row), GetTwoIndex(pinfo->col));
pinfo->m_end = ::GetTickCount();
pinfo->m_bfinished = true;

return 1;
}
IDCT变换进程函数:
UINT ThreadProcfastIDct(LPVOID pParam)
{
RUNINFO *pinfo = (RUNINFO*)pParam;
pinfo->m_start = ::GetTickCount();
fidct_2D((double *)pinfo->data, GetTwoIndex(pinfo->row), GetTwoIndex(pinfo->col));
pinfo->m_end = ::GetTickCount();
pinfo->m_bfinished = true;

return 1;
}

四、程序运行
fdtc001.jpg
图1 普通DCT变换

fdtc002.jpg
图2 快速DCT变换

fdtc003.jpg
图3 快速IDCT变换

从以上可以看出,采用上述快速DCT变换对一幅256灰度的256*256的图像进行DCT正变换只需94ms,IDCT逆变换也只需94ms,而如果采用普通DCT变换,所需时间要575172ms。由此可见,DCT快速变换的巨大的优势,计算速度快,效率高。
PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
我要评论
0
5
关闭 站长推荐上一条 /3 下一条