双载子接面晶体管(Bipolar Junction Transistor,又称双极晶体管、双载子接面三极管)根据不同的掺杂方式,在同一硅芯片上,制造出三个掺杂区域,形成两个 P-N 結。
以 NPN 晶体管为例:在双载子接面晶体管里,虽然基极内的电洞较多,是多数载子。但是电流的传递,主要却是透过基极里的少数载子(即电子)来完成的,也因此 BJT 被称做少数载子元件(minority-carrier devices)。
以下以NPN晶体管做主要的例子
一个晶体管可以被视为两个二极管共用一端,像NPN晶体管为共用正极,而PNP则是共用负极。在一般状况下,射-基极接面跨有顺向偏压(简称顺偏),而集-基极接面却相反,接的是逆向偏压(简称逆偏),在这种操作模态之下主要当作放大器使用,称为顺向主动模式,我们将在下一节有更详细的介绍。
双极晶体管有三种主要工作区间:截止区、饱和区、顺向主动区。
以NPN晶体管为例子,射极接负电压,基极接正电压形成顺偏,而集极电位又较基极高,是为逆偏,此时晶体管处于工作区(active region)。在NPN晶体管处于顺向主动区时,射极P-N 結上空乏区(depletion region)的热平衡会被破坏,大量的电子由浓度高的射极区经基极扩散(diffusion)到达基-集极接面的空乏区。到达空乏区后,由于空乏区内形成的电场,电子又被拉入集极,形成集极电流iC
当射-基极、集-基极接面均跨有顺向偏压时,BJT操作在饱和区。 请注意,BJT的饱和区与MOSFET的饱和区虽然名称相同,但定义完全不同,MOSFET的饱和区操作模式,反而比较近似于BJT的顺向主动模式。
为了使集极电流更大,在制造BJT时会采取以下策略:
1. 射极区的电子浓度会做得较集极高,方便电子扩散,而PNP晶体管也相同,射极区的电洞浓度较集极更高些,通常差两个数量级左右。
2.
由于电子在穿越基极的过程中,容易和电洞结合(recombine)而消失,故在BJT基极的部分会尽量做薄,基极做得越薄,则电子所需扩散的距离也就愈
短,得载子能够较容易跨越它而到达集基-集接面的空乏区。 故我们知,各极载子浓度和基极宽度对于集极电流来说是息息习习相关的。
另一种常用的模型来分析晶体三极管电路是“h参数模型”的模式,与混合π模型和Y参数双端口密切相关,但使用输入电流和输出电压为独立变量,而不是输入和输出电压。这双端口网络特别适合于BJTs ,因为它本身很容易分析电路的行为,可用于进一步发展精确的模型。如图所示,其中的“ x ”表示双极晶体管的拓扑,对于共射极拓扑采取的各种符号的具体值为:
h参数如下 –
如上所示,h参数使用小写的下标字母,表示交流条件或分析;大写则表示直流条件。对于共射极拓扑结构(CE),使用粗略的h参数模型可以进一步简化电路分析,这时hoe和hre参数是被忽视的(就是说,它们分别设为无穷和零,)。还应该指出,在h参数模型适合低频率,小信号分析;对于高频分析,跨电极电容必须补充考虑。
文章评论(0条评论)
登录后参与讨论