原创 利用Protothread实现实时多任务系统

2011-8-25 10:21 1574 10 10 分类: MCU/ 嵌入式
本文转自CSDN Larry的专栏 http://blog.csdn.net/t_larry/article/details/3097214 
摘要在许多系统资源非常紧张的单片机应用中,使用实时操作系统进行任务调度来实现实时多任务系统时,由操作系统带来的系统开销往往是不可接受的。通过升级硬件来改善系统资源紧张,意味着成本的增加,降低产品的竞争力。本文介绍采用Protothread在非常小的系统开销下实现实时多任务系统的方法。
关键词 Protothread 实时 多任务 线程模型
  嵌入式程序框架一般类似于程序1所示结构:系统中有3个任务——TaskA、TaskB、TaskC,均放置于主循环内,在每一个循环周期内都被执行一次。在这种结构中,能满足系统实时性要求的条件是: (当且仅当)TaskA 、TaskB、TaskC三个任务的运行时间之和要小于系统实时响应的时间要求。在系统较为简单、任务运行时间能满足实时要求的情况下,可以采用这种最简单、最直接的顺序执行方式。但是更多的情形是,系统不仅要对一些事件做出实时响应,并且还要承担很多其他的非实时任务,并且这些非实时任务的运行时间要远远超出了实时响应时间的要求。传统的这种程序结构显然不能满足系统的实时性要求。通常的解决方案是,引入实时操作系统,由操作系统进行任务的调度,优先执行实时任务,达到满足系统实时性的要求。
  程序1嵌入式程序框架
  void main(void) {
    Init();
    while(1) {
      TaskA();
      TaskB();
      TaskC();
    }
  }
  void Interrupt_1(void) interrupt 1 {
    …
  }
  void Interrupt_2(void) interrupt 2 {
    …
  }
  一般来说,在嵌入式系统开发中引入实时操作系统有诸多优点:
  ◆ 更好地支持多任务,实时性要求能够得以操作系统或无操作系统的场合;
  ◆ 支持阻塞操作且没有栈的切换。
  使用Protothread实现多任务的最主要的好处在于它的轻量级。每个Protothread不需要拥有自已的堆栈,所有的Protothread 共享同一个堆栈空间,这一点对于RAM资源有限的系统尤为有利。相对于操作系统下的多任务而言,每个任务都有自已的堆栈空间,这将消耗大量的RAM资源,而每个Protothread仅使用一个整型值保存当前状态。
2 Protothread的阻塞运行机制
  以下是一个典型的Protothread程序示例:
  程序2Protothread程序示例
  PT_THREAD(radio_wake_thread(struct pt *pt)) {
    PT_BEGIN(pt);
    while(1) {
      radio_on();
      timer_set(&timer, T_AWAKE);
      PT_WAIT_UNTIL(pt, timer_expired(&timer));
      timer_set(&timer, T_SLEEP);
      if(!communication_complete()) {
        PT_WAIT_UNTIL(pt, communication_complete()‖timer_expired(&timer));
      }
      if(!timer_expired(&timer)) {
        radio_off();
        PT_WAIT_UNTIL(pt, timer_expired(&timer));
      }
    }
    PT_END(pt);
  }
  这是一个非常简单的无线通信的状态切换程序①,展开Protothread的宏定义,便可以得到程序3所示的展开代码:
  程序3Protothread宏展开代码
  void radio_wake_thread(struct pt *pt) {
    switch(pt﹥lc) {
      case 0:
      while(1) {
        radio_on();
        timer_set(&timer, T_AWAKE);
        pt﹥lc = 8;
        case 8:
          if(!timer_expired(&timer)) {
            return;
          }
          timer_set(&timer, T_SLEEP);
          if(!communication_complete()) {
            pt﹥lc = 13;
            case 13:
            if(!(communication_complete() ||timer_expired(&timer))) {
              return;
            }
          }
          if(!timer_expired(&timer)) {
            radio_off();
            pt﹥lc = 18;
            case 18:
            if(!timer_expired(&timer)) {
              return;
            }
          }
        }
      }
    }
  当Protothread程序运行到PT_WAIT_UNTIL时,判断其运行条件是否满足,若不满足,则阻塞。通过比对程序2和程序3的程序代码可以得知,Protothread的阻塞其实质就是函数返回,只不过在返回前保存了当前的阻塞位置,待下一次Protothread被调用时,直接跳到阻塞位置执行,再次判断运行条件是否满足,并执行后续程序或继续阻塞。
3 利用Protothread构造实时多任务系统
  与操作系统下的多任务不同,操作系统下的每个任务可在任意时刻被打断并阻塞,Protothread仅能在程序员指定位置阻塞。用Protothread实现实时多任务,正是利用了Protothread在指定位置阻塞的特点,让出执行权限给更高优先级的任务先运行。
  下面举例说明如何利用Protothread构造实时多任务系统。
  系统要求:
  TaskA实时任务,30 ms内响应,运行时间<20 ms;
  TaskB实时任务,200 ms内响应,运行时间<40 ms;
  TaskC非实时任务,响应时间无要求,运行时间>30 ms。
  设计思路:
  将TaskB和TaskC分成若干步,每步运行时间不超过10 ms(这个时间可视系统需求而定,例如TaskA若为40 ms内响应,则每步可扩至20 ms)。任务以3个Protothread的方式运行。首先执行TaskA,在TaskA执行完成1次后,释放执行权限,让TaskB和TaskC执行。 TaskB或TaskC在每执行1步之前检查运行时间,一旦发现30 ms内不够执行1步时,阻塞运行,让出执行权限给TaskA。同样,TaskB和TaskC的调度关系也类似,先运行TaskB,完成时释放执行权限,让 TaskC执行;TaskC在每执行1步之前检查运行时间,若发现200 ms内不够执行1步时,阻塞运行,让出执行权限重新交给TaskB。
  源程序(Task0TimeCounter、Task1TimeCounter为计数器,每毫秒加1):
  #include "ptsem.h"
  #define TASKA_MAX_RUN_TIME20
  #define TASKA_CYCLE_TIME30
  #define TASKB_CYCLE_TIME200
  #define TASK_STEP_TIME10
  #define TASK0_VALID_TIME TASKA_CYCLE_TIMETASK_STEP_TIME
  #define TASK1_VALID_TIME TASKB_CYCLE_TIMETASK_STEP_TIMETASKA_MAX_RUN_TIME *2
  /*按照PT_WAIT_UNTIL 的宏定义扩展一个新宏:当程序进入阻塞时发送一信号,告知高优先级任务获得执行权限*/
  #define LC_STEP_SET(s,n) s = __LINE__ + n; case __LINE__ + n:
  #define PT_SEM_WAIT_UNTIL(pt, s, condition, n)//
    do {
      LC_STEP_SET((pt)﹥lc,n);
      if(!(condition)) {if((s)﹥count==0)
        PT_SEM_SIGNAL(pt,s);
        return PT_WAITING;
      }
    } while(0)
  struct pt TaskAPt;
  struct pt TaskBPt;
  struct pt TaskCPt;
  struct pt_sem SemRunTaskA;
  struct pt_sem SemRunTaskB;
  /*若30 ms内已经不够时间执行1步,则让出TaskA的执行权限*/
  #define TASKB_STEP(pt) //
    PR_SEM_WAIT_UNTIL(pt, & SemRunTaskA,TaskOTimeCounter<=TASKO_VALID_TIME,0)
  /*若200 ms内已经不够时间执行1步,则让出TaskB的执行权限*/
  /*若30 ms内已经不够时间执行1步,则让出TaskA的执行权限*/
  #define TASKC_STEP(pt) //
    PT_SEM_WAIT_UNTIL(pt, &SemRunTaskB,Task1TimeCounter<=TASK1_VALID_TIME,0);//
    PT_SEM_WAIT_UNTIL(pt, &SemRunTaskA,Task0TimeCounter<=TASK0_VALID_TIME,1)
  int ProtothreadTaskA(struct pt *pt) {
    PT_BEGIN(pt);
    PT_SEM_WAIT(pt, &SemRunTaskA);/*等待其他任务让出执行权限*/
    ResetTask0TimeCounter;/*对时间计数器置0*/
    TaskA();/*TaskA任务*/
    PT_END(pt);
  }
  int ProtothreadTaskB(struct pt *pt) {
    PT_BEGIN(pt);
    PT_SEM_WAIT(pt, &SemRunTaskB);/*等待TaskC让出执行权限*/
    ResetTask1TimeCounter;/*对时间计数器置0*/
    TASKB_STEP(pt);/*如果不够1步执行,则阻塞,让出执行权限*/
    TaskB_1();/*TaskB任务的第1步*/
    TASKB_STEP(pt);
    TaskB_2();/*TaskB任务的第2步*/
    TASKB_STEP(pt);
    TaskB_3();/*…*/
    PT_END(pt);
  }
  int ProtothreadTaskC(struct pt *pt) {
    PT_BEGIN(pt);
    TASKC_STEP(pt);/*如果不够1步执行,则阻塞,让出执行权限*/
    TaskC_1();/*TaskB任务的第1步*/
    TASKC_STEP(pt);
    TaskC_2();/*TaskB任务的第2步*/
    TASKC_STEP(pt);
    TaskC_3();/*…*/
    TASKC_STEP(pt);
    TaskC_4();
    PT_END(pt);
  }
  void main(void) {/*系统初始化*/
    PT_INIT(&TaskAPt);
    PT_INIT(&TaskBPt);
    PT_INIT(&TaskCPt);
    PT_SEM_INIT(&SemRunTaskA,1);
    PT_SEM_INIT(&SemRunTaskB,1);/*运行任务*/
    while(1) {
      ProtothreadTaskA(&TaskAPt);
      ProtothreadTaskB(&TaskBPt);
      ProtothreadTaskC(&TaskCPt);
    }
  }
  模拟运行结果如表1所列。运行结果显示,3个任务的运行情况完全满足系统的设计要求。从资源需求来看,完成此例的系统设计,共需要12个字节的RAM空间。笔者进一步对Protothread定义文件做了少许修改和优化,最终仅耗费6个字节。
结语
  本文旨在解决资源紧张型应用的、多任务环境下的实时性问题。 通过借助Protothread的阻塞运行机制, 成功实现了低开销的实时多任务系统。
表1 模拟运行结果运行
            
参考文献
[1] Adam Dunkels, Oliver Schmidt, Thiemo Voigt. Using Protothreads for Sensor Node Programming[C]. REALWSN'05 Workshop on RealWorld Wireless Sensor Networks, Stockholm, Sweden, June 2005
[2] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, et al. Protothreads: Simplifying EventDriven Programming of MemoryConstrained Embedded Systems[C]. In Proceedings of the Fourth ACM Conference on Embedded Networked Sensor Systems (SenSys 2006), Boulder, Colorado, USA, November 2006.
[3] Labrosse Jean J. MicroC/OSII The Real Time Kernel Second Edition[M]. CMP Books, CMP Media.
[4] 冉全. 单片机中基于多线程机制的实时多任务研究[J] .微型机与应用,2003(8): 39-40.
PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
10
关闭 站长推荐上一条 /3 下一条