原创 ARM启动代码分析

2011-4-23 10:53 1911 6 7 分类: MCU/ 嵌入式
ARM启动代码分析-philips的LPC2xxx系列
/**********************************************************************************************
*File:                  startup.s
*Author:         Embest w.h.xie         2005.02.21
*Desc:         lpc22xx\lpc212x\lpc211x\lpc210x startup code
*History:  
* note modify: cui jian jie           2006-4-25
*comment:
**********************************************************************************************/
# 处理器的七种工作方式的常量定义
.EQU         Mode_USR,            0x10                   #用户模式
.EQU         Mode_FIQ,             0x11                   #FIQ模式
.EQU         Mode_IRQ,             0x12                   #IRQ模式
.EQU         Mode_SVC,            0x13                   #超级用户模式
.EQU         Mode_ABT,             0x17                   #终止模式
.EQU         Mode_UND,            0x1B                            #未定义模式
.EQU         Mode_SYS,             0x1F          #系统模式

# 中断屏蔽位
.EQU         I_Bit,              0x80                   //IRQ中断控制位,当被置位时,IRQ中断被禁止
.EQU         F_Bit,             0x40                   //FIQ中断控制位,当被置位时,FIQ中断被禁止

# 状态屏蔽位
.EQU         T_bit,             0x20          //T位,置位时在Thumb模式下运行,清零时在ARM下运行

# 定义程序入口点
.globl _start
                .code 32

                .TEXT
                
_start:

# 中断向量表

Vectors:
                LDR     PC, Reset_Addr         //把Reset_Addr地址处的内容放入PC中
                             LDR     PC, Undef_Addr
                LDR     PC, SWI_Addr
                LDR     PC, PAbt_Addr
                LDR     PC, DAbt_Addr
                .long   0xb9205f80          @ keep interrupt vectors sum is 0
                LDR     PC, [PC, #-0xff0]               //当前PC值减去0xFF0等于IRQ中断入口地址
                LDR     PC, FIQ_Addr
#地址表
Reset_Addr:                                                             #该地址标号存放Reset_Handler程序段的入口地址
      .long     Reset_Handler
Undef_Addr:                                                             #该地址标号存放Undef_Handler程序段的入口地址
      .long     Undef_Handler
SWI_Addr:                                                                 #该地址标号存放SWI_Handler程序段的入口地址
      .long     SWI_Handler
PAbt_Addr:                                                                #该地址标号存放PAbt_Handler程序段的入口地址
      .long     PAbt_Handler
DAbt_Addr:
      .long     DAbt_Handler
      .long     0
IRQ_Addr:                                                                 #地址标号处存放一个无效的数据
      .long     0
FIQ_Addr:                                                                  #该地址标号存放FIQ_Handler程序段的入口地址
      .long     FIQ_Handler


Undef_Handler:
      B         Undef_Handler
PAbt_Handler:
      B         PAbt_Handler
DAbt_Handler:
B         DAbt_Handler

  

#软中断的中断服务子程序入口地址
SWI_Handler:                                                          
                STMFD   sp!, {r0-r3, r12, lr}          //入栈,现场数据保护
                MOV     r1, sp                                     //把堆栈指针SP存入R1中
                MRS     r0, spsr                    //把SPSR值存入R0,SPSR值为产生软中断时的CPSR
                TST     r0, #T_bit                          //判断R0(SPSR)的T位是否为0
                             #SPSR的T位不为0,工作在Thumb模式下
                LDRNEH  r0, [lr,#-2]                          //SPSR的T位不为0,则[lr-2]-〉r0
                BICNE   r0, r0, #0xFF00            // SPSR的T位不为0,清除r0的Bit8~Bit15位
                             # SPSR的T位为0,工作在ARM模式下
                LDREQ   r0, [lr,#-4]                          // SPSR的T位为0,则[lr-4] -〉r0
                BICEQ   r0, r0, #0xFF000000   // SPSR的T位为0,清除r0的Bit24~Bit131位

                # R0 is interrupt number             //R0是中断号
                # R1 is stack point                                      //R1是堆栈指针

                BL      SWI_Exception          //进入软中断处理程序
                LDMFD   sp!, {r0-r3, r12, pc}^          //出栈,现场数据恢复


# 快速响应中断的中断服务自程序的入口地址
FIQ_Handler:    
                STMFD     SP!, {R0-R3, LR}                         //入栈的现场保护
#                BL           FIQ_Exception                    //进入FIQ的中断处理程序
                LDMFD     SP!, {R0-R3, LR}                         //出栈,恢复现场
                SUBS       PC, LR, #4                                   //返回到主程序

# 复位后程序处理的入口地址
Reset_Handler:
                BL       RemapSRAM         //进行存储器映射的操作
#下面几行代码用来判断当前的工作模式
                MRS      R0, CPSR                          //读CPSR到寄存器R0
                AND      R0, R0, #0x1F                   //R0 = R0 AND 0x1F
                CMP      R0, #Mode_USR     //比较R0 和 #Mode_USR,二者相减
//如果相等则说明当前处在用户模式下,需要通过产生11号软中断进入系统模式。因为下面的初始化堆栈
//需要在不同的工作模式下切换,而在用户模式下不能直接切换,只有系统模式可以,所以要通过产生11
//号软中断切换到用户模式。
                SWIEQ    #11                                    

                BL       InitStack                      //进行堆栈初始化工作
                            

ARM启动代码分析-philips的LPC2xxx系列32006-7-24 14:33:00
#------------------------------------------------------------------------------
#- 初始化C变量
#------------------------
#- 下表由连接器自动产生
#- RO: 只读=代码区。
#- RW: 可读可写=预先初始化的数据(初始化的全局变量)和预先被清零的数据(未初始化的全局变量)。.
#- ZI: 预先被清零的数据区(未初始化的全局变量)
#- 预先被初始化的数据区定位在代码区之后。
#- 预先被清零的数据区定位在预先被初始化的数据区之后。
#- 注意数据区的位置 :
#- I如果用 ARM SDT, 当链接器选择no -rw-base时, 数据区被映射在代码区之后
#- 你可以把数据区房子内部的SRAM( -rw-base=0x40 or 0x34)中
#- 或者放在外部的SRAM( -rw-base=0x2000000 )中。
#- 注意:为了提高代码的密度,预先被初始化的数据必须尽可能的少。
#------------------------------------------------------------------------------
#该部分程序功能:先判断当前是在RAM中运行还是在FLASH中运行,如果在FLASH中运行,先把FLASH
#中的预先赋值的RW段数据和未赋值的ZI段数据都搬移到RAM区中,再把ZI段数据全部清零;如果程#序就是在RAM中运行,则直接把ZI段数据清零。
                .extern       Image_RO_Limit               /* ROM区中数据段的起始地址*/
                .extern       Image_RW_Base          /* RW段起始地址 */          
                .extern       Image_ZI_Base                /* ZI段的起始地址*/              
                .extern       Image_ZI_Limit               /* ZI段的结束地址加1 */                  

                ldr         r0, =Image_RO_Limit      /* 取ROM区中数据段的首地址 */
                ldr         r1, =Image_RW_Base /* 取RAM区中RW段的目标首地址*/
                ldr         r3, =Image_ZI_Base          /*取RAM区中ZI段的首地址 */
                cmp         r0, r1                 /* 比较ROM区中数据段首地址和RAM区中RW段目标首地址 */
                beq         NoRW                                   /*相等代表当前是在RAM中运行*/
LoopRw:        cmp         r1, r3                  /*不相等则和RAM区中ZI段的目标地址比较*/
                ldrcc       r2, [r0], #4  /*如果r1<r3,则把r0地址上的数据读出到r2中,然后r0=r0+4*/
                strcc       r2, [r1], #4 /*如果r1<r3,则把r2内数据写入道r1地址中,然后r1=r1+4*/
                bcc         LoopRw   /*如果r1<r3,则跳转到LoopRw 继续执行*/
NoRW:         ldr           r1, =Image_ZI_Limit          /* 取ZI段的结束地址 */
                mov         r2, #0                                /*将r2赋0*/
LoopZI:         cmp         r3, r1                  /* 将ZI段清零*/
                strcc        r2, [r3], #4  /*如果r3<r1,将r2内容写入到r3地址单元中,然后r3=r3+1*/
                bcc         LoopZI        /*如果r3<r1(即C=0),则跳转到LoopZI */

                .extern Main                                        /*声明外部变量*/
                B        Main                                      /*t跳转到用户的主程序入口*/



# 为每一种模式建立堆栈,ARM堆栈指针向下生长
InitStack:
                                     MOV     R1, LR                                  //把该子程序返回地址保留在R1中

                                     LDR     R0, =Top_Stack                            //取栈定地址到R0中
#进入未定义模式,并禁止FIQ中断和IRQ中断
                                     MSR     CPSR_c, #Mode_UND|I_Bit|F_Bit
#设置未定义模式下堆栈的栈顶指针
                                     MOV     SP, R0                                  
                                     SUB     R0, R0, #UND_Stack_Size       #未定义模式下堆栈深度

#进入终止模式,并禁止禁止FIQ中断和IRQ中断
                                     MSR     CPSR_c, #Mode_ABT|I_Bit|F_Bit
#紧接着未定义模式下的堆栈,设置终止模式下栈顶指针
                                     MOV     SP, R0                                  
                                     SUB     R0, R0, #ABT_Stack_Size                   #终止模式下堆栈深度

#进入FIQ模式,并禁止FIQ中断和IRQ中断
                                     MSR     CPSR_c, #Mode_FIQ|I_Bit|F_Bit
#紧接着终止模式下的堆栈,设置下FIQ模式下栈顶指针
                                     MOV     SP, R0
                                     SUB     R0, R0, #FIQ_Stack_Size                   #FIQ模式下的堆栈深度

#进入IRQ模式,并禁止FIQ中断和IRQ中断
                                     MSR     CPSR_c, #Mode_IRQ|I_Bit|F_Bit
#紧接着FIQ模式下的堆栈,设置IRQ模式下的栈顶指针
                                     MOV     SP, R0
                                     SUB     R0, R0, #IRQ_Stack_Size                   #IRQ模式下的堆栈深度

#进入超级用户模式,并禁止FIQ中断和IRQ中断
                                     MSR     CPSR_c, #Mode_SVC|I_Bit|F_Bit
#紧接着IRQ模式下的堆栈,设置超级用户下的栈顶指针
                                     MOV     SP, R0
                                     SUB     R0, R0, #SVC_Stack_Size                #超级用户下的堆栈深度

#设置进入用户模式
                                     MSR     CPSR_c, #Mode_USR
#紧接着超级用户模式下的堆栈,设置用户模式下的栈顶指针,剩余的空间都开辟为堆栈
                                     MOV     SP, R0

                                     MOV     PC, R1                                  #堆栈初始化子程序返回



# 重映射SRAM区
RemapSRAM:
                
                MOV    R0, #0x40000000            //RAM区首地址
                LDR    R1, =Vectors                     //向量表首地址
#下面一段程序是把从0x00000000开始的64个字节(FLASH中的中断向量表和地址表)搬移到以
#0x40000000为首地址的RAM区中
                LDMIA R1!, {R2-R9}             //把以[R1]为首地址的32个字节数据装载到R2-R9中
                STMIA R0!, {R2-R9}             //把R2-R9中的数据存入以[R0]为首地址的单元中
                LDMIA R1!, {R2-R9}             //把以[R1]为首地址的32个字节数据装载到R2-R9中
                STMIA R0!, {R2-R9}             ////把R2-R9中的数据存入以[R0]为首地址的单元中
#下面几行代码设置存储器映射控制寄存器
                LDR    R0, =MEMMAP         //取MEMMAP地址到R0
                MOV    R1, #0x02                
                STR    R1, [R0] //给MEMMAP赋值为0x02,设置中断向量从RAM区从新映射
                
                mov    pc, lr                    //跳转到主程序

#下面一段程序代码是进入软中断来切换系统的工作模式,当希望从一种模式切换入另一种模式时,可以通
#过调用下面对应标号的程序段进入软中断。在软中断处理程序中会根据所给定的中断号处理,执行SWI #num后软中断号被存入R0中。
.globl   disable_IRQ
.globl   restore_IRQ
.globl   ToSys
.globl   ToUser

# 禁止IRQ

disable_IRQ:  
               STMFD   SP!, {LR}                                       //把LR值压入堆栈
               swi     #0                                                               //产生0号软中断, 0 -〉R0
               LDMFD   SP!, {pc}                                        //恢复PC值,返回

# 恢复IRQ

restore_IRQ:
               STMFD   SP!, {LR}                                       //把LR值压入堆栈
               swi     #1                                                               //产生1号软中断,1 –〉R0
               LDMFD   SP!, {pc}                                        //恢复PC值,返回

#进入系统工作模式

ToSys:
               STMFD   SP!, {LR}                                       //把LR值压入堆栈
               swi     #11                                                             //产生11号软中断,11 –〉R0
               LDMFD   SP!, {pc}                                        //恢复PC值,返回

# 进入用户工作模式

ToUser:
               STMFD   SP!, {LR}                                       //把LR值压入堆栈
               swi     #12                                                             //产生12号软中断,11 –〉R0
               LDMFD   SP!, {pc}                                        //恢复PC值,返回
PARTNER CONTENT

文章评论1条评论)

登录后参与讨论

用户1570367 2011-5-6 16:50

顶一下,以后详细看一看
相关推荐阅读
wrhwindboy 2011-07-24 07:15
下载与KEIL和IAR联调文件vdmagdi.exe和vdmcspy.exe的方法
安装proteus7,点击程序->proteus7->proteus VSM model help->ARM MICROPROCESSOR MODEL,然后点击Remote Debu...
wrhwindboy 2011-07-24 06:58
怎么样从一个疯狂下载者成为一个学习者
为了方便广大网友,各种网站也应运而生。当网络的建设和发展正进行的如火如荼,喧闹之中,搭配学习这壶美酒的,竟是一瓶名叫资料下载的毒药,更糟糕的是,美酒和毒药已经被灌到了同一个杯子里,浑然一体 ,叫人在畅...
wrhwindboy 2011-07-23 07:37
DES算法的介绍和实现(下)
INT32 handle_data(ULONG32 *left , ULONG8 choice){       INT32  number = 0 ,j = 0;          ULONG32 *...
wrhwindboy 2011-07-23 07:36
DES算法的介绍和实现(中)
三.文件加密解密工具在《DES算法的介绍和实现(上)》一文中,介绍了DES算法的原理,在本文中将给出一个文本文件加密工具的具体实现代码。3.1 实现的介绍利用算法核心代码封装的接口函数笔者编写了一个针...
wrhwindboy 2011-07-23 07:35
DES算法的介绍和实现(上)
一.DES算法介绍DES( Data Encryption Standard)算法,于1977年得到美国政府的正式许可,是一种用56位密钥来加密64位数据的方法。虽然56位密钥的DES算法已经风光不在...
wrhwindboy 2011-07-23 06:59
FIFO 深度!
如果数据流连续不断则FIFO深度无论多少,只要读写时钟不同源同频则都会丢数;FIFO用于缓冲块数据流,一般用在写快读慢时,FIFO深度 / (写入速率 - 读出速率) = FIFO被填满时间  应大于...
EE直播间
更多
我要评论
1
6
关闭 站长推荐上一条 /3 下一条