tag 标签: 直流

相关帖子
相关博文
  • 热度 16
    2016-2-16 12:53
    1455 次阅读|
    0 个评论
    电流感应开关。直流,交流,常开,常闭,开闭开型,延时型,监控值可调型。
  • 热度 23
    2015-7-16 17:21
    1811 次阅读|
    0 个评论
    看到这个标题,可能有人会说,那电容不就是跟蓄电池一样了吗?如果你非要这样认为,再某些层面也有一些相像! 不要急,我们还是先看看mpn里面电容的样子吧:   这个图中的白块块黄块块和黑块块的远见都是mpn里面经常见到的电容器,电容也分大小的,容量大就能储存电量多,容量小就储存的电量小,它们的大小单位是用法拉来做单位的,法拉这个单位很大,mpn里面用的电容器都很小,所以常见的都用小单位微法和微微法。电容器长相不同也有一些相应的区别,像这一些样子的   和这个样子白色的都是瓷电容,不分正负极,在电路途中用   这样的符号表示,c32表示在这个电路图中第32个电容,数字224是表示这个电容的大小前面两个数字是有效数字,后面的4是表示4个0,就是说这个电容的值是220000微微法(pF),也就是0.22微法(uF),这个样子的电容在mpn中都是用微微法做单位的;还有一种电容如图中的比较大一点的那个黄色的和黑色的,并且一头有一条横线标志的那个电容叫电解电容器,它是分正负极的,有横杠标志的那一端就是正极,在电路中要接在高电位的,接反了它就会发热漏电不能起到它的作用了,严重还会冒烟起火!电解电容在电路中用的符号也与瓷电容不同:   可以看到标示2的那端是一个长方块,那就是电解电容的的正极,也就是有横杠杠的那一端。电解电容的值一般比较大,电路图中220u就是220微法(uF),斜杠后面是电解电容的耐压值,6.3v就是说这里用的电解电容耐压要到6.3v,当然耐压更高的电容也可以,但是低了不行!220微法的电解电容在贴片元件上怎么表示呢?它的表示法和瓷质电容是一样的227就是了,220000000微微法,简单吧!也有一些电解电容例如标10  25v  的,它表示10微法耐压25v的电解电容!     说了这么多要说说电容器是干什么用的了,电容器虽说能储存电能但是很少有拿它当电池用的,那么拿它作什么用呢?在mpn电路中主要用它做滤波来用,原来电容有一个重要特性就是“通交流,隔直流”,什么意思?也就是说像声音信号、交流电等这些电压是一种有规则或者无规则的电流流动方向不断变化着的电压;直流电就像电池里的电压它的电流是一直从正极流向负极的,由于方向不会变化就叫直流电,像这样的电流就不能连续的通过电容器,在mpn电路中往往就同时存在着两种电流成份,有一些地方是不能存在直流成份的(例如mpn耳机里面就不能有直流成份,否则耳机就会发热烧坏,所以从主控出来的声音接口就要通过两个隔直流的电解电容把直流隔断),有一些地方同样不能存在交流成份(例如我们需要的纯净的直流电,就要把它里面交流成份滤掉于是就在正电和负电之间接一个电容,让交流成份直接通过电容流到负极),于是我们就通过电容器让交流(波动的)电流通过电容,阻断按照一个方向流动的直流电的电流!     需要说明的是电容的大小跟能通过它的变化电流的快慢有关,电流变化速度快的可以通过容值小的电容,变化速度慢的就不能通过电容值很小的电容,无线电波是一种变化速度很快的交流电,因此可以通过十几微微法的电容,声音的变化速动就慢得多了,要几十微法甚至几百微法的电容才能通过,所以从主控到耳机之间的隔直流电容(我们叫隔直耦合电容)一般都是50-100微法的电容,太小就会影响声音大小和音质,但是变化很快的交流成分我们人的耳朵就听不到了,它也能顺利通过大电解电容,这种变化很快人耳听不到混杂在声音里的变化电流通过耳机时,会对我们造成烦躁不安不舒服感,必须把它滤除掉不让他通过耳机,于是就在它进入耳机前用一个磁珠L4 L5阻挡一下再用一个小电容C30 C31给它提供一个通路让它直接进入地!如图   这个磁珠和电容组成的电路叫做LC滤波电路!     凡是直接接地的电容不管是电解电容或者瓷电容一般都是给交流电提供入地的滤波电路,这样的电容就叫滤波电容。电解电容是给变化慢得交流电提供通路的,瓷电容是给变化快的交流电提供通路的!     直流电在接通电容的瞬间会给电容充电,要充电就要有充电电流,电充满了,也就没有电流了!充电量多少跟电容的大小有关,数码相机中的闪光灯中有一个耐压500v2200微法的储能电解电容,大约300v的电压在里面储存着,储能电解电容通过激发瞬时通过闪光灯管放电发出强亮的灯光,这个应用就是电容的储电作用!实际上电容器通交流隔直流的特性也是用的电容充放电的原理,这个原理比较费解需要你慢慢琢磨才会理解! 下面分析几个使用电容的电路,以加深印象!   上面这个电路是mp3中给矩力2085 2051 2091等主控提供1.5v基准电压的稳压电路,1.5v基准电压要求是非常纯净的直流电压,里面绝对不能有交流变化的电流成份!这个图中通过一个1.5v稳压IC把从3脚输入的AVCC 3v电压稳定到1.5v从2脚送出来,但是里面可能会混杂有变化快慢不同的变化电流干扰1.5v电压的稳定性,所以必须要用电容把交流成分给滤除掉,电路图中的C1 C2 E1 和22欧姆的电阻等就是为了把里面的变化快慢不同的交流电电流直接入地而滤除掉,这样提供的1.5v电压就成了纯净的稳定直流电压了! 下面这个电路中的所有电解电容和瓷电容的作用也都是起到相同的作用:  再举一个隔直耦合电容的例子: 这个电路是收音模块左右声道声音输出电路,电路中的C1、 C2就是隔直耦合电容,它使用的是105的电容,就是1微法的瓷质电容器,收音模块的收音机声音就是通过这两个电容器耦合到主控里面的音频放大电路进行放大,主控里面的音频放大电路需要的是纯交流的声音成分,隔断直流成份一免干扰主控里面的音频放大电路的正常工作! 下面这个电路图是瑞芯微2606主控的复位电路图: 有两个电容 C38 、C44在这个电路图中,C44是滤波电容不多讲了,重点讲一下C38,在开机的一瞬间,vcc的3v电接通给c38充电,电流通过流过充电电路到三极管的基极,三极管基极瞬间得到一个正电压,于是三极管导通相当于三极管的发射极和集电极接通,resetn就相当于与地接通,电压为0v,随着c38电容充满了电(时间是根据C38大小决定的,大了时间就长,小了时间就短,104的电容要充满点的时间在这里要0.2秒-0.5秒),三极管基极的电压就变为0v,三极管关断,resetn处的电压随之升高到3v,完成主控复位工作!
  • 热度 23
    2015-3-14 20:13
    1859 次阅读|
    0 个评论
       0. 前言   EDA技术发展迅猛,已在科研、产品设计与制造及教学等各方面都发挥着巨火的作用。EDA代表了当今电子产品设计的最新发展方向,利用EDA工具,电子工程师不仅可以在计算机上设计电子产品,还可以将电子产品从电路设计、模拟实验、性能分忻、到设计出PCB印制板的整个过程在计算机上处理完成。在教学方面,几乎所有理工科的高校都开设了EDA课程,学生通过EDA的学习演练,掌握用EDA技术进行电子电路的设计、《电子技术基础》课程的模拟仿真实验,从而为今后从事电子技术设计工作打下基础。   Multisim2001是电子电路设计与仿真方面的EDA软件。由于Multisim2001的最强大功能是用于电路的设计与仿真,因此称这种软件叫做虚拟电子实验室或电子工作平台。在任一台计算机上,利用Multisim2001均可以创建《电子技术基础》虚拟实验室,从而改变传统的教学模式,学生可把学到的《电子技术基础》知识,应用Multisim2001电路仿真软件进行验证。例如串联型直流稳压电源的设计,该系统是由整流、滤波和稳压三部分组成,桥式整流电路加上电容滤波后,使输出的波形更平滑,稳压部分,一般有 四个环节:调整环节、基准电压、比较放大器和取样电路。当电网电压或负载变动引起输出电压Uo变化时,取样电路将输出电压Uo的一部分馈送给比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿Uo的变化,从而维持输出电压慕本不变。    1. 直流稳压电源设计   设计并制作串联型直流稳压电源,其输出电压UO=10V,输出调整范围为8~12V,额定输出电流IL=100 mA,电网电源波动±10%,稳压系数Sr0.05,输出电阻RO=0.05。工作温度为25~40℃。    1.1 初选电路   根据设计题目要求,输出电流为100mA较大,所以选用由两个三极管组成的复合管,从稳压调节范围考虑,选择带有可变电阻器的取样电路,由此初选一个电路原理图如图1,通过参数计算和仿真测试,再重新考虑所选电路,使之满足要求。最后在调试过程中进一步确定电路及元件参数。    1.2 元件参数选择    1.2.1 整流滤波电路   采用桥式整流,电容滤波电路。为了保证调整管始终工作在放大区,需要有一定的管压降,根据计算得出U1=15V。考虑到IL=100mA,加上通过R6、稳压管VZ的电流(取10mA),取样电路的电流(取20mA)。经过整流二极管的电流ID=130mA。在实际电路中根据计算出的U1和ID来选取整流二极管,本例中选取3N259,滤波电容选取470μF/30V。    1.2.2 调整部分   调整管V1的选取原则是工作可靠。根据BUCEO≥UOMAX,ICM≥1.5IOM,选取V1为2N6703。    1.2.3 基准电压   选择原则是使取样电压尽可能高一些,以更好地反映Uo的变化,一般取分压比为(0.5~0.8),稳压值在6V左右较好。所以选取稳压值为6.2V,型号为IN4735A的稳压管。    1.2.4 放大电路和取样电路   选择放大电路参数的原则是保证在电网电压或负载电流变化时放大电路都应工作在放大区并且尽量提高放大倍数,以满足稳压精度的要求。这里选取2N2222。   取样电路,为了提高稳定性,要使通过取样电阻R7、RP、R8的电流比V4基极电流大得多,这样才能保证分压比的要求。但是电流太大时,取样电阻上的损耗也大,这里取电流为20mA。根据计算选取R7=100Ω,R8=200Ω,RP=220Ω。    2. 编辑电路原理图    2.1 放置元器件   在Windows桌面上,双击Multisim2001图标进入程序主窗口,主窗口中最大的区域是电路工作区,在此可对电路原理图进行编辑和测试。首先,将初选电路原理图中的所有元器件,分类从元器件库中调出来。方法是在元器件库工具栏中,单击包含该元器件的图标,打开该元器件库,从元器件库中将该元器件拖拽至电路工作区。例如:放置V1,单击三极管元器件库图标,打开Transistors三极管元器件库,三极管图标下的底纹有灰色和绿色,灰色是表示现实中存在的元器件,绿色表示在现实中不存在,是虚拟元器件。单击灰色底纹的NPN型三极管,打开ComponentBrowser对话框,选择2N6703,单击OK,移动鼠标到合适位置,单击鼠标放下三极管。元器件方向不合适,在其上右键单击,出现快捷菜单,在菜单上根据需要选择镜像、旋转……。元器件V1需要执行90CounterCW命令,逆时针旋转90°。到此为止,元器件V1放置完毕。利用此方法依次放置所有元器件。元器件放置完后,要精心布局元器件的放置位置,以确保元器件分布合理、美观。        2.2 导线的连接   元器件放置完毕后,进行连线,按照原理图,将鼠标指向元器件的管脚使其出现实心小十字,按下鼠标左键,拖拽出一根导线并连接至相关元器件的管脚,同样方法,正确完成所有导线的连接。至此原理图编辑完成,如图1所示。            2.3 仪器的调入   选用仪器可从仪器库中将相应的仪器图标拖拽至电路工作区,仪器图标上有连接端,用于将仪器连入电路,如图2所示。本例中使用了万用表、示波器。万用表有两个输入端,示波器共有4个接线端(A通道端、B通道端、T触发端、G接地端)。需要观察测试波形时,可以双击仪器图标打开仪器面板,如图2(a),示波器显示的是桥式整流后没有滤波的波形,图2(b)万用表显示的是输出UO的数值。仪器的使用方法和实际仪器基本相同,万用表的使用方法,首先要根据被测两点的实际情况,用鼠标选择测量直流-还是交流~,然屙选抒测量电压V、电流I或电阻R。示波器的使用方法,首先选择工作模式Y/T,然后选择A、B通道的输入耦合开关,是直流DC、交流AC还是接地零。           3. 电路的仿真分析    3.1 仿真步骤   仿真分析开始前可双击仪器图标打开仪器面板。准备观察被测试波形。按下程序窗口右上角的启动/停止开关状态为1,仿真分析开始。若再次按下,启动/停止升关状态为0,仿真分析停止。电路启动后,需要调整示波器的时基和通道控制,使波形显示正常。仿真后的的仪器工作状态如图3所示。           3.2 仿真输出结果    3.2.1 整流滤波   在输入端加人幅度U1=15V,频率为50Hz的交流电压,RL=100Ω,可用Multisim2001电子工作台上提供的万用表、示波器观察滤波电路输出结果。这时调节RP,使输出UO在10V左右,从图3中可以看到用万用表测量出关键点的电压U1=14.998V,UI=18.381V,UO=10.156V,用示波器A通道和B通道分别显示整流滤波后电压UI的波形和稳压输出电压Uo的波形,从示波器显示窗口可以看山:上面一条锯齿波曲线为UI波形,下面一条线为Uo波形。    3.2.2 稳压电路   模拟交流电网波动±10%分别为13.5V和16.5V,频率为50Hz交流电压时的情况。首先改变输入电压信号,模拟电网波动,用Multi-sim2001工作平台操作比较简单,只需用鼠标对准电压源双击,根据屏幕显示将其由15 V,分别改变为13.5V、16.5V,这时测量的对应的UI分别为16.280V和20.406V,输出电压UO为10.133V和10.181V。    3.2.3 过流保护电路   当U1=15V,频率为50Hz,分别改变RL。   当RL=∞,Uo=10.160V;   当RL=100Ω,IL=101.816mA,Uo=10.156V;   当RL=10Ω,IL=160.075mA,Uo=1.601V;   当RL=5.1Ω,IL=158.433mA,Uo=808.005mV,   当当负载短路时,IL=156.741mA,Uo=156.74lpV。   从测量的数据看,本电路是一个限流型保护电路。    4. 与设计指标比较校核    4.1 输出电压   理论计算Uo=(R7′+R8′)(Vz+Ube4)/R8=10.196V。式中R7′=R7+RP′=265Ω,R8′=R8+RP″=255Ω,VZ=4.3V,Ube4=0.7V。式中RP′是RP的上半部分阻值,RP″是RP的下半部分阻值。用Multisim2001模拟仿真。使用万用表实测输出电压为Uo=10.160V,测量稳压电源输出电压Uo调节范围当U1=15V,频率为50Hz,调节RP,即当键盘字母为小写状态,连续按下A键,电位器滑动头向下移动,直至最下端,这时测量Uo=13.29V:反之,当键盘字母为大写状态,连续按下A键,电位器滑动头向上移动,直至最上端,这时测量Uo=6.064V。    4.2 稳压系数Sr理论值的计算                                          式中β4取值30, 取值1K, 为取样电路的分压比。用Multisim2001模拟仿真电子线路,根据屏幕显示将其由15 V,改变为13.5 V,这时测量的对应UI分别为18.381V和16.280V,输出电压UO为10.156V和10.133V。   由此得出:                           4.3 输出电阻   用Multisim2001模拟仿真测量的数据:当RL=∞, UO="10".160V; 当 RL="100"Ω,IL=101.816mA,Uo=10.156V;计算得出:                          通过以上分析,串联型直流稳压电源的测量值和理论计算相符。实际线路满足设计指标要求。如果以上设计的电路通过模拟仿真分析,不符合设计要求,可通过逐渐改变元器件参数,或更改元器件型号,使设计符合要求,最终确定出元器件参数。并可对更改的电路立即进行仿真分析,观察虚拟结果是否满足设计要求,这在实际的电路板中是难以做到的。    5. 结束语   从上述例子可见,Multisim2001是一个开放的虚拟电子实验平台。既有它的优越性,又有它的局限件。设计人员可以做各种类型的电子线路实验和实际电子产品设计,但不能完全取代最终电路和实物测试,因为实际电子线路,干扰现象是一个不好解决的难题,特别是高频电路。之所以用Multi-sim2001模拟仿真,就是在制成实际电路之前能够保证电路有大致正确的参数属性,从而减少设计中不必要的弯路。在《电子技术基础》教学中,运用Multisim2001电路仿真软件进行教学,一方面可以验证理论知识,另一方面还可以设置一些故障,例如串联型直流稳压电源中,调整管V1的c-e极断路。先提问学生从理论上分析会出现什么问题,然后让学生应用仿真软件进行仿真,来验证结果,从而拓展学生思维,进一步促进《电子技术基础》的教学。因而我们可以看到,对于工程技术人员,合理运用Multisim2001电路仿真软件,可以节省大量人力、物力,缩短设计周期;对于教师教学,能够理论联系实际,强化学生实践能力,培养出实用型人才。
  • 热度 16
    2014-12-21 18:40
    1089 次阅读|
    0 个评论
      滤波电感 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的 直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒 L 型、LC 滤波、LCπ 型滤波和 RCπ 型滤波等)。有源滤波的主要形式是有源 RC 滤波,也被称作电子 滤波电感 。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为 S=1.57,全波整流和桥式整流的输出电压的脉动系数 S≈O.67。对于全波和桥式整流电路采用 C 型滤波电路 后,其脉动系数 S=1/(4(RLC/T-1)。(T 为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π 型滤波电路,实质上是在电容滤波的基础上再加一级 RC 滤波电路组成的。如图 1(B)RC 滤波电路。若用 S 表示 C1 两端电压的脉动系数,则输 出电压两端的脉动系数 S=(1/ωC2R)S。 由分析可知,电阻 R 的作用是将残余的纹波电压降落在电阻两端,最后由 C2 再旁路掉。在 ω 值一定的情况下,R 愈大,C2 愈大,则脉动系数 愈小,也就是滤波效果就越好。而 R 值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大 C2 的电容量,又会增大电容器的体积 和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合.
  • 热度 23
    2011-12-15 15:49
    2271 次阅读|
    0 个评论
      本文以图示的方式与大家分享直流 Vgs-id 测试的步骤: 传统的只有直流的 Vgs-id 和通过 4200- RBT ,偏置T型接头的直流IV测试之间的主要区别是SMU的数量。通过偏置T型接头进行的直流IV测试,使用2个 SMU,其源和本体连接到地(SMA的同轴电缆屏蔽层)。 在 4200 脉冲 IV 测量 CMOS 晶体管过程中, 直流 Vgs-id 的测试如图 8 和图 9 所示。   图8. 直流Vgs-id ITM definition选项页   图9. 直流Vds-id ITM Graph选项页   Vgs–id-pulse 测试如图 10 和图 11 所示 。 图10.        Vds-id-pulse UTM definition选项页 图11.        Vgs-id-pulse UTM Graph选项页   由于脉冲测试是 UTMS (用户测试模块),所以参数是通过图7所示的表格界面来改变的。 图7.       脉冲 Vds-id UTM definition 选项页 自加热的 Vds-id 和无自加热的 Vds-id 该项目的测试类似于如上描述的 Vds-id 直流 和 脉冲测试 ,但是需要在门极和漏极电压做些修改来引起 直流 ITM 测试结果的自加热。脉冲测试使用相同的参数值,但是脉冲的低占空比(0.1%或更低)不会引起 DUT 的自加热。图12是直流结果的图形,但是叠加上了一个基于脉冲的 Vds-id 曲线。    图12.       Vds-id-noselfheating UTM Graph选项页。暗红的宽曲线是脉冲结果,对应于最上面的直流曲线(窄蓝线)。 了解更多信息  要想了解有关4200-PIV脉冲IV包或者吉时利其他系列数字源表的更多信息,请点击 http://www.keithley.com.cn/products/dcac/voltagesource/?mn=4200-PIV ,或登录 吉时利官方微博 ( http://weibo.com/keithley )与专家进行互动。 # 吉时利互动有礼 # 可免费索取吉时利2011年测试测量产品目录CD     http://www.keithley.com.cn/promo/wb/286                                 吉时利2011年测试测量产品目录CD包含了完备的测试测量资源,近400页的参考资料、选型指南都包括在一张简单易用的CD中。   Vds-id http://www.keithley.com.cn/semi/4200scs/iv Vgs–id-pulse http://www.keithley.com.cn/data?asset=4660 4200-PIV  http://www.keithley.com.cn/products/dcac/voltagesource/?mn=4200-PIV
相关资源