SAR ADC 的驱动电路设计存在多个难点,处理不当将导致 ADC 输出码值跳动范围巨大。上周接触到的一个案例就是这样,与工程师检视完原理图,发现工程师是一款仪表放大器直接驱动 16bit 1.5M SAR ADC ,并且模拟电路由 DCDC 直接供电。查阅相应数据手册,开玩笑道“ SAR ADC 驱动的三个坑全占了”!本篇将详细讨论驱动 RC 的用途与设计方法,同时提供便捷化设计工具,并结合 LTspice 进行仿真。 SAR ADC 模型与驱动原理 SAR 型 ADC 输入端电路如图 4.26(a) ,在采集阶段 SAR 型 ADC 的开关 SW+,SW- 连接到地( GND ),独立电容开关矩阵连接到输入端 , 捕捉 INx+ 与 INx- 输入端模拟信号。采集完成进入转换阶段时,开关 SW+ 、 SW- 断开,独立电容开关矩阵连接到地输入, INx+ 与 INx- 输入间差分电压施加到比较器输入端,导致比较器不平衡,按照二级制加权电压变化实现数字转化。 图 4.26SAR 型 ADC 输入电路及模型 简化的 SAR 型 ADC 模型如图 4.26 ( b ),当开关 S1 闭合 S2 断开,输入信号 Vin 向电容 CADC 充电,电容电压 VADC 到达输入信号 Vin 电压时采样结束,进入转换阶段。 图 4.27SAR 型 ADC 驱动电路 VADC 波形如图 4.28 ( a )。因此需要驱动电路使电容 CADC 尽快充电,驱动电路需要使用放大器和输出 RC 组成,如图 4.27 。在 S1 闭合时, CADC 没有电荷, VIN 电压瞬间向下反冲,如图 4.28 ( b )。在放大器与 CFILT 共同向 CADC 提供电荷, VADC 电压逐步上升到与输入电压 VIN 相同时,输入采集阶段完成。 图 4.28 采集阶段 Vin 与 VADC 电压 采集时间 tACQ 由 RFILT 、 CFILT 、 CADC 决定,完成充电的建立时间 t 为式 4-17 。 CADC 电压值 VACD 由电容 CFILT 、 CADC ,以及加载两个电容上的电荷量 QFILT 、 QADC ,为式 4-18 。 由于初始采集时, QADC , QFILT 为 VIN 与 CFILT 的乘积,反冲电压最低点值为式 4-19 。 而反冲电压为式 4-20 。 由 RC 网络所产生的时间常数τ 0.63 为式 4-21 。 其中, VREF 为基准源参考电压值, n 为 ADC 位数。 根据工程经验,从 VADC 出现反冲恢复到距离 VIN 电压小于 0.5 倍 LSB 电压时,定义为采集时间 tACQ ,该指标可以在 ADC 数据数据手册中找到。所选择的 RC 参数在 ADC 驱动过程中,需要满足采集时间、时间常数、建立时间的关系为式 4-22 。 根据式 4-22 确认 RC 参数值,但上述推论没有考虑如下问题: 1)ADC 采样的带宽为式 4-23 。 所以 RC 参数的选择往往要在带宽和采集时间之间多次迭代计算。 2) 真实放大器的参数中,开环输出阻抗的影响不可忽略, RFILT 需要结合输出阻抗。 3) 由于 ADC 内部采样电容的非线性,当 RFILT 值变大会导致 ADC 采样失真,该失真不能通过降低采样率改善。 因此,高效的设计 SAR 型 ADC 驱动的方法仍然是使用辅助工具和 LTspice 仿真软件。 SRA ADC 驱动辅助工具使用 在 ADI 官网精密信号链设计工具界面,选择“ ADC Driver ”进入 ADC 驱动工具窗口。如图 4.29 ( a ),“ ADC ”项中选择 ADC 的型号,输入采样率值和基准源电压值。在“ Driver ”项中,选择放大器型号和电路结构,输入增益值、反馈电阻值、工作电压值。在“ input ”项选择输入信号类型与输入频率值。在“ Fliter ”项,输入 RC 参数值。在“ Circuit ”窗口查看电路结构图。进入“ Niose&Distortion ”窗口,工具提供电路的 THD 等信息 , 如图 4.29 ( b )。 图 4.29SAR 型 ADC 驱动电路配置 进入 “ Input Setting ”窗口,工具提供计算电路的反冲电压值, ADC 采集时间、 RC 电路带宽参数,如图 4.30 ( a )。当 RC 参数配置不良时,在“ Niose&Distortion ”窗口与“ Input Setting ”窗口会提供警告。工具还能够生成 LTspice 电路,在“ Next Step ”窗口下载,如图 4.30 ( b )。 图 4.30 SAR 型 ADC 驱动电路性 LTspice 仿真 SAR 型 ADC 驱动 如图 4.29 中 ADC 使用 LTC2378-16, 输出速率为 1MSPS, 基准源电压为 5V 。放大器使用 ADA4945-1 ,增益配置为 1 ,电源轨电压为 -0.6V 与 5.6V , RFILT 为 20 Ω, CFILT 为 3.3nf 。得到反冲电压为 67mV , RC 建立时间应该小于采集时间 tACQ460ns 。由图 4.30 ( d )下载仿真的电路如图 4.31 。 图 4.31 LTC2378-16 驱动电路 瞬态分析结果如图 4.32 ,电压从 4.99979 最低跌落到 4.93705V, 反冲电压为 62.74mV,RC 建立时间为 358.5ns 小于采集时间 tACQ460ns ,与预期设计近似。所以读者可以使用在线工具高效 SAR ADC 驱动放大器选型,以及根据具体放大器型号设计 RC 参数进行验证。 图 4.32 LTC2378-16 驱动电路仿真结果 如图 4.31 在电路中,双击进入 LTC2378-16 进入内部电路,如图 4.33 。由 S1 、 S3 控制信号经过电阻 R1 、 R2 ,向电容 C1 、 C2 充电。其中 R1 、 R2 、 C1 、 C2 可由规格书确认。 图 4.33 LTC2378-16 Spice 模型电路 如图 4.34 中 LT2378 输入电阻为 40 Ω,输入电容为 45pF 。根据 ADC 时序操作,设计开关控制的时钟,实现 SAR 型 ADC 的模型。 图 4.33 LTC2378-16 输入模型 综上, SAR ADC 驱动放大器的选型与 RC 电路设计工作是具有极高挑战的,不乏一些经验丰富老司机也会在此栽跟头,所以笔者介绍设计原理,更多的推荐是借助辅助工具设计,以及 LTspice 进行仿真。此外,之前的文章都是以实际器件模型仿真电路性能,通过篇文章抛砖引玉,希望读者能对 LTspice 建模有初步的认识,这也是 LTspice 的重要应用方向。 关注公众号“优特美尔商城”,获取更多电子元器件知识、电路讲解、型号资料、电子资讯,欢迎留言讨论。