tag 标签: 备中

相关资源
  • 所需E币: 4
    时间: 2020-1-13 13:52
    大小: 120.5KB
    上传者: 238112554_qq
    便携式电子设备中的立体声便携式电子设备中的立体声|[日期:2006-1|来源:EDNChina 作者:Pascal|[字体:大||-5]|Tournier|中小]|[pic][pic]手机等便携式电子产品正集成越来越多的多媒体功能,这引起了人们对增加立体声功能的极大兴趣。单声道结构用于声音放大及和弦铃声,在某些情况下可用作免提扬声器。虽然功能已足够,但这并非是令人满意的高质量音乐播放解决方案。目前,3G手机或便携式多媒体播放器等便携式设备可轻易地通过数字处理提供音频3D效果。有了这种设备,可嵌入立体声耳机收听功能,这样左右信号可从DAC或调频(FM)收音机中获得。虽然耳机功率在32Ω负载上约为10mW,主喇叭可简易地用于产生并为8Ω负载输出最高达1W的功率。由于需要提供立体声解决方案,而非传统的单声道系统,在这些功率水平上很难提供高效率的净化音频信号。AB类解决方案提供极低的THD+N,但最佳效率仅为65%左右。图1为此解决方案的原理简图。[pic]已知电源、负载和输出功率,可使用以下公式计算每个放大器的耗散功率:[pic]举例说,若我们采用手机中使用的典型值Rl=8Ω和Vp=3.6V(典型锂离子电池电压),耗散功率和效率曲线与输出功率的关系如图3和图4所示。输出功率范围的最佳效率低于65%时,如果产品要长时间地播放音乐或进行具有音频功放的游戏,电……
  • 所需E币: 4
    时间: 2020-1-13 14:01
    大小: 814.5KB
    上传者: 238112554_qq
    便携式设备中音频电路的设计要点便携式设备中音频电路的设计要点在便携式产品设计中很容易遇到与音频相关的特殊问题,由于音频电路看似简单,规划设计时工程师通常不会在相对低频的音频电路(20Hz至20KHz)中花费太多时间。本文试图从最基本的音频电路设计入手,为工程设计人员提供一定的设计参考意见和方法。最后开启音频电路这个简单的原则可能最为重要,但却经常被系统设计者所忽略。功率放大器无法区分噪音、咔嗒声和信号。如果过早地开启功放,它会不加区分地放大所有输入信号。便携式产品播放电路通常包含数字信号存储器、数模转换器(DAC)、功放、扬声器或耳机(图1)。存储器中的数字信号经过解码后发送到DAC进行转换,DAC的模拟输出通过电容交流耦合到功放的输入端,放大器必须能够提供足够的电流驱动低阻扬声器。如上所述,放大器使能后将放大进入其输入端的任何信号,包括有用信号、噪声、咔嗒或嘭嘭声。如图2所示,扬声器放大器连接在8Ω扬声器和音频DAC之间。DAC输出与功放之间的交流耦合电容是必需的,以保证两个器件具有适当的输入和输出偏置电压。大多数音频放大器的输出端含有偏置电压,为了可靠传输音频信号需要将此偏置电压预先设置好。在开启功率放大器之前必须留出一定的时间间隔,以便建立适当的偏置电压。假如过早地开启功率放大器,DAC输出正处于爬升阶段的偏置电压对于放大器输入来说相当于一个衰减脉冲。该信号经过-放大器放大后进入扬声器,产生可闻的咔嗒声。图2假定功率放大器已经开启,并在DAC开启之前已经建立输入偏置。DAC使能后,节点A的电压会爬升到如图所示的DAC输出偏置电压。当DAC的偏置电压爬升时,由耦合电容以及放大器的输入电阻构成的高通滤波器在节点B会产生一个毛刺,经过放大器后的输出信号等于输入信号之间的差值[(IN+)-(IN-)]乘以放大器的增益。低频响应与输入时间常数用于隔……
  • 所需E币: 4
    时间: 2020-1-13 14:09
    大小: 182.28KB
    上传者: 2iot
    便携式设备中的无源元件对音频质量的影响便携式设备中的无源元件对音频质量的影响在音频电路设计中通常采用无源元件设置增益,提供电流偏置和电流退耦,并用来分隔相对独立的直流电路模块。而对于便携式音频设计,因为受到空间、高度和价格的限制,必须采用小封装、低高度和低价格的无源元件。1非线性的来源电容器和电阻器都具有电压系数,就是说如果在其两端施加不同的电压时其物理参数会发生变化。例如,一个在零电压下精确阻值为1.00kΩ的电阻器,如果施加10V的端电压,那么,它的阻值将变为1.01kΩ。电压系数的影响程度取决于元件的类型、结构和化学成分(对于电容器)。有些生活厂家会提供元件的电压系数曲线图,给出标称电压百分比和标称电容器百分比的关系曲线。新一代薄膜电阻器具有非常好的电压系数,实验室条件下很难测量其误差。电容器则不同,从以下几方面来看将会限制音频性能。●电压系数。●介质吸收(DA):一个看似完全放电的电容器仍然会有极少量的电荷残留。●等效串联阻抗(ESR):这是一个与频率相关的参数,一个经串联耦合电容器驱动的低阻抗耳机或扩音器,由于耦合电容器存在ESR将会限制最大输出功率。●颤噪效应:有一些电容器具有有显著的压电效应,但它受到外部压力弯曲时,会在两端产生相应的电压输出。●公差:对于多数大容量的电容器(几微法或者更高),一般很少标注公差值。而电阻器的公差一般为1%~2%。下面介绍一种测试方法,同时也包括简单的测试电路。从音频测试设备显示结果来看,要吧清楚地量化音频信号电路的电容器非常线性对音频质量的影响。我们的目……
  • 所需E币: 5
    时间: 2020-1-13 14:20
    大小: 828KB
    上传者: 2iot
    有关便携式设备中音频电路的设计指南有关便携式设备中音频电路的设计指南在便携式产品设计中很容易遇到与音频相关的特殊问题,由于音频电路看似简单,规划设计时工程师通常不会在相对低频的音频电路(20Hz至20KHz)中花费太多时间。本文试图从最基本的音频电路设计入手,为工程设计人员提供一定的设计参考意见和方法。最后开启音频电路这个简单的原则可能最为重要,但却经常被系统设计者所忽略。功率放大器无法区分噪音、咔嗒声和信号。如果过早地开启功放,它会不加区分地放大所有输入信号。便携式产品播放电路通常包含数字信号存储器、数模转换器(DAC)、功放、扬声器或耳机(图1)。存储器中的数字信号经过解码后发送到DAC进行转换,DAC的模拟输出通过电容交流耦合到功放的输入端,放大器必须能够提供足够的电流驱动低阻扬声器。如上所述,放大器使能后将放大进入其输入端的任何信号,包括有用信号、噪声、咔嗒或嘭嘭声。如图2所示,扬声器放大器连接在8Ω扬声器和音频DAC之间。DAC输出与功放之间的交流耦合电容是必需的,以保证两个器件具有适当的输入和输出偏置电压。大多数音频放大器的输出端含有偏置电压,为了可靠传输音频信号需要将此偏置电压预先设置好。在开启功率放大器之前必须留出一定的时间间隔,以便建立适当的偏置电压。假如过早地开启功率放大器,DAC输出正处于爬升阶段的偏置电压对于放大器输入来说相当于一个衰减脉冲。该信号经过-放大器放大后进入扬声器,产生可闻的咔嗒声。图2假定功率放大器已经开启,并在DAC开启之前已经建立输入偏置。DAC使能后,节点A的电压会爬升到如图所示的DAC输出偏置电压。当DAC的偏置电压爬升时,由耦合电容以及放大器的输入电阻构成的高通滤波器在节点B会产生一个毛刺,经过放大器后的输出信号等于输入信号之间的差值[(IN+)-(IN-)]乘以放大器的增益。低频响应与输入……
  • 所需E币: 4
    时间: 2020-1-14 09:59
    大小: 229KB
    上传者: 微风DS
    D类功放在便携式设备中的应用D类功放在便携式设备中的应用射频功率放大器被广泛应用于各种无线通信发射设备中。线性功放在基站中的成本比例约占1/3,如何有效、低成本地解决功放的线性化问题显得非常重要。高效率高线性度的功放研究是一个热门课题,特别是近几年针对WCDMA功率放大器。目前国内能生产10W以上的WCDMA功率放大器厂家只有少数几家公司,因为WCD-MA功率放大器对线性度的要求更高。而用普通的回退法生产的WCDMA功率放大器符合指标的只能做到几瓦,这个功率用在基站上是远远不够的,只能用在一般的小型直放站上。功率放大器的线性度和效率是设计功率放大器的重点。在线性度方面,前馈结构是目前比较成熟的结构,广泛运用于现代通信系统中,数字预失真在业界则被认为是功率放大器线性化的方向。而随着现代通信的发展,效率也开始越来越被关注。Doherty方法被认为是提高效率最有前景的一种结构。前馈与Doherty结构相结合的结构或者数字预失真与Doherty结合的结构具有很大的价值。1.Doherty功率放大器设计1.1Doherty功率放大器原理概述Doherty结构由2个功放组成:一个主功放,一个辅助功放,主功放工作在B类或者AB类,辅助功放工作在C类。两个功放不是轮流工作,而是主功放一直工作,辅助功放到设定的峰值才工作(这个功放也叫作peakampli-fier)。主功放后面的90°四分之一波长线是阻抗变换,目的是在辅助功放工作时,起到将主功放的视在阻抗减小的作用,保证辅助功放工作的时候和后面的电路组成的有源负载阻抗变低,这样主功放输出电流就变大。由于主功放后面有了四分之一波长线,为了使两个功放输出同相,在辅助功放前面也需要90°相移。如图1所示。|[pic]……
  • 所需E币: 3
    时间: 2020-1-15 15:35
    大小: 311.28KB
    上传者: 二不过三
    高频双向变换串联补偿技术在交流供电设备中的应用与发展……
  • 所需E币: 3
    时间: 2020-1-13 10:11
    大小: 397.5KB
    上传者: 238112554_qq
    在便携设备中使用TVS二极管进行ESD保护在便携设备中使用TVS二极管进行ESD保护静电放电(ESD)是指两个具有不同静电电位的物体,由于直接接触或静电感应而引起的两物体间静电电荷的转移。当静电能量达到一定程度后,击穿其间介质而进行放电的现象。因此,ESD保护无处不在,而ESD过压保护则成为各种电子设备设计的基本要求。最新的无线手持产品大多数都配备了高速数据接口、高分辨率LCD屏幕和相机模块,甚至有些手机还具备接收电视节目的功能。虽然增加了很多新的功能,但手机尺寸仍在持续变薄变小。众多功能汇聚在一个狭小空间内,同时主要集成电路很多采用较先进工艺制造,导致手机设计中的ESD问题变得更加严重。它可能会造成手机工作异常、死机,甚至会损伤手机。而这些问题必须在手机设计的最初阶段解决。手机中的ESD保护部分这里以手机为例。手机中需要进行ESD防护的部位有:1)SIM卡接口电路;2)键盘电路;3)耳机和话筒电路;4)数据及USB端口;5)电源口;6)彩色LCD驱动端口及LCD背光电路。ESD在设计中的选择ESD保护在设计中应该兼顾性能和成本。要注意以下几个原则:1)保护电路响应速度要快—IEC61000-4-2波形的上升沿只有1ns。2)能应付大的瞬态电流。3)考虑瞬态电压在正负极性两个方向发生。4)对信号增加的电容负载效应和电阻损耗效应控制在允许范围内。5)考虑体积因素以适应轻巧的便携式设备。6)产品成本因素。[pic]图1:手机中需要进行ESD防护的部位。ESD保护在实现上基本有两种方式:IC内部的保护和IC外部的保护。前者虽然可以增加靠性,而且因不需要外部的保护而比较简单;但同样,也会增大硅片面积,同时,因为硅片中寄生电容和寄生电阻的存在,会引起……