tag 标签: 方波

相关帖子
相关博文
  • 热度 28
    2017-11-28 20:05
    8315 次阅读|
    0 个评论
    信号的上升时间,对于理解信号完整性问题至关重要,高速pcb设计中的绝大多数问题都和它有关,,很多信号完整性问题都是由信号上升时间短引起的,你必须对他足够重视。 信号上升时间并不是信号从低电平上升到高电平所经历的时间,而是其中的一部分。对于信号上升时间通常有两种:第一种定义为10-90上升时间,即信号从高电平的10%上升到90%所经历的时间。另一种是20-80上升时间,即信号从高电平的20%上升到80%所经历的时间。两种都被采用。 带宽是指被测信号幅值衰减到0.707倍时对应的频带宽度。幅度的平方即为功率,平方后为0.5倍,带宽也即功率衰减到一半时的频带宽度。 重要的是我们必须建立这样的概念:上升时间对电路性能有重要的影响,只要小到某一范围,就必须引起注意,哪怕是一个很模糊的范围。没有必要精确定义这个范围标准,也没有实际意义。因此只需记住,现在的芯片加工工艺使得这个时间很短,已经到了ps级,你应该重视他的影响的时候了。 随着信号上升时间的减小,反射、串扰、轨道塌陷、电磁辐射、地弹等问题变得更严重,噪声问题更难于解决。 信号上升时间的减小,从频谱分析的角度来说,相当于信号带宽的增加,也就是信号中有更多的高频分量,正是这些高频分量才使得设计变得困难。互连线必须作为传输线来对待,从而产生了很多以前没有的问题。因此,学习信号完整性,你必须有这样的概念:信号陡峭的上升沿,是产生信号完整性问题的罪魁祸首。 对于数字电路,输出的通常是方波信号。方波的上升边沿非常陡峭,根据傅立叶分析,任何信号都可以分解成一系列不同频率的正弦信号,方波中包含了非常丰富的频谱成分。如下图周期性方波信号的傅里叶级数展开为 可以用实验来直观的分析方波中的频率成分,看看不同频率的正弦信号是如何叠加成为方波的。下图是7次谐波合成的波形,21次谐波合成的波形以及41次谐波合成的波形。这里可以直观的看到:叠加的谐波成分越多,波形就越像方波。 因此如果叠加足够多的谐波,我们就可以近似的合成出方波。下图是叠加到217次谐波后的波形。已经非常近似方波了,不用关心角上的那些毛刺,那是著名的吉博斯现象,这种仿真必然会有的,但不影响对问题的理解。这里我们叠加谐波的最高频率达到了21.7GHz。  在通过下图我们可以看到,谐波分量越多,上升沿越陡峭。或从另一个角度说,如果信号的上升边沿很陡峭,上升时间很短,那该信号的带宽就很宽。上升时间越短,信号的带宽越宽。红色是基频+3次谐波+5次谐波+7次谐波后的上升边沿,黑色是一直叠加到217次谐波后的波形上升边沿。 这里说一下,最终合成的方波,其波形重复频率就是100MHz。叠加谐波只是改变了信号上升时间。信号上升时间和100MHz这个频率无关,换成50MHz也是同样的规律。如果你的电路板输出数据信号只是几十MHz,你可能会不在意信号完整性问题。但这时你想想信号由于上升时间很短,频谱中的那些高频谐波会有什么影响?记住一个重要的结论:影响信号完整性的不是波形的重复频率,而是信号的上升时间。
  • 热度 28
    2013-12-2 10:21
    5936 次阅读|
    7 个评论
    利用FPGA+DAC0832制作的信号源 制作信号源有多种方法,但是由于接口数量以及手头资源的因素,我选择了用FPGA来产生一个信号源,算是自己正式开始了FPGA逻辑设计吧。本文介绍的就是我自己利用cyclone系列的FPGA制作的信号源,信号源的设计包括以下几个部分: 1、整个设计框架 2、各个小模块的实现(可调分频模块,三角波产生模块(含rom的定制,需先生成.mif文件),正弦波产生(同上)模块,方波产生模块,锯齿波产生模块,具体生成方法同上,4选1多路选择器模块,4路输入及输出均为8位,DAC0832控制器) 3、外围电路的设计(包括频率控制,加 减 设置功能,以及直接设置多少频率,显示模块(待设计),DAC0832模块) 4、仿真结果 在每一个设计开始的时候,首先要进行的是整体框架的划分,即系统有哪些部分组成,模块与模块之间应该怎样互联,明确这些之后才是具体的底层实现。 一、整体设计的框架图 系统时钟是FPGA正常工作所需的时钟(选取的是50MHz),时钟分频模块用于将系统时钟分频,它决定了信号波形的周期,通过控制它可以调整信号发生器产生的信号的周期(这里先介绍含有两个固定分频系数的分频器,如何产生可调周期的信号等下次详述)。接着是四个波形发生器,它们都需要先定制rom的初始化数据,然后再利用初始化的存储数据产生rom,利用QUARTUS Ⅱ产生各模块。4选1多路选择器,用于选择输出的波形,DAC0832控制器用于产生外部硬件的控制信号。接下来的是DAC0832的外部电路,用于产生最终输出的模拟信号。 在以上各模块中,难点是如何产生波形发生器,以及如何进行调频和调幅。(在本设计中只是用到了两个固定的周期,而且没有涉及到调幅,这些都将在下一篇中进行详述介绍)。 二、各小模块的具体实现 1、时钟分频模块 本部分设计的周期是6.25MHz和12.5MHz,对系统时钟进行8分频和4分频即可,分频系数分别为8和4。 具体实现电路原理图如下,rst信号用于复位,k4用于选择频率选择,当K4为高电平时输出频率为6.25MHz,为低电平时是12.5MHz。clkin是系统时钟为50MHz。   图1、分频模块 具体的FPGA实现代码如下: library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all;   entity divide_8 is    port(        rst : in std_logic;        clkin: in std_logic;        k4: in std_logic;        clkout: out std_logic    ); end entity;   architecture divide of divide_8 is signal n :integer range 0 to 7; signal clk: std_logic; begin    devide:process(clkin,rst)    begin        if rst='0' then                         --reset configration           clkout='0';           n=0;           clk='0';        elsif rising_edge(clkin) then           if k4='1' then               if n=7 then                     --6.25MHz                  n=0;                  clk= not clk;               else                  n=n+1;               end if;           else               if n=3 then                     --12.5MHz                  n=0;                  clk=not clk;               else                  n=n+1;               end if;           end if;        end if;        clkout=clk;    end process; end architecture;     2、波形发生模块 本模块分为正弦波发生器模块,三角波发生器模块,方波发生器模块,锯齿波发生模块,分别用于产生对应的波形数据。 产生流程如下:1、建立存储器初始化数据表(用于存储波形数据)。2、利用新建立的初始化数据表.mif文件定制对应的rom,生成对应的波形发生器。 具体步骤如下: 2.1新建一个.mif文件。File→new→memory initialization file→ok 填入的字数为128,字节位数为8(字),这用于确定建立的数据表的大小。 图2、新建的.mif文件 在里面填入波形初始化数据即可,由于采用的是8位的数模转换器,转换精度为8位,最大值为255,对应的如果参考电压为5V的话,精度即为19.6mV。  定制rom过程如下: 利用megawizard plug-in manager定制正弦信号数据ROM宏功能块,并将上面的波形数据加载于此ROM中。 选择菜单tools—megawizard plug-in manager命令,在出现的对话框中选择create a new custom,单击next,产生图3所示对话框,如图设置                     图3. LPM宏功能模块设定 在左栏选择memory compiler项下的ROM:1-PORT,再选择器件和VHDL语言方式,输入ROM文件存放的路径和文件名。单击next出现图4对话框,按图中设置 图4. 选择控制线、地址线和数据线 注意需要将上面设置框中的64改选为128,产生7位地址线,单击next,按图5所示设置                    图5. 选择地址锁存信号inclock 单击next,按图6所示设置           图6. 调入ROM初始化数据文件并选择在系统读写功能 在上面的窗口中,点击browse选择工程下面的之前建立的sinwave.mif初始化数据文件,单击finish按钮完成ROM定制。将生成的sinwave.vhd文件加入工程中。 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all;   entity rom_out is port(clk:in std_logic;     dout:out std_logic_vector(7 downto 0)); end rom_out;   architecture dacc of rom_out is component sinwave                                    port(address:in std_logic_vector(6 downto 0);     clock:in std_logic;     q:out std_logic_vector(7 downto 0)); end component; signal q1:std_logic_vector(6 downto 0);                 --generate --address signal,address rise by 1 along with clk's rising_edge begin process(clk) begin if clk'event and clk='1' then q1=q1+1; end if; end process; u1:sinwave port map(address=q1,q=dout,clock=clk);    --call --sinwave.mif file end dacc; 生成原理图文件:file- Create/Update-create symbol files for current file即可生成。如图7所示: 图7、正弦波发生器 其余三种波形发生器的生成方法与正弦波类似,这里就不再赘述,下面只将三角波、方波、锯齿波的初始化数据表和波形发生器顶层设计列出。 2.2三角波生成器 数据表如图8所示(这些数据都是可以自己计算的,方法是在对应的函数图形上取点,只取纵坐标上的点,并将其存入数据表即可),   图8、三角波数据 三角波发生器顶层设计 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all;   entity tri_angle_out is    port(        clk: in std_logic;        dout: out std_logic_vector(7 downto 0)    ); end entity;   architecture transmit of tri_angle_out is    component tri_angle                                                                                           --tri_angle rom claim        port(           address: in std_logic_vector(6 downto 0);           clock: in std_logic;           q: out std_logic_vector(7 downto 0)        );    end component; signal q1 : std_logic_vector(6 downto 0);   begin    process(clk)    begin        if(rising_edge(clk)) then           q1=q1+1;        end if;    end process;    u1: tri_angle port map(clock=clk,address=q1,q=dout);            --call tri_angle.vhd file end architecture; 生成原理图文件,如图9所示 图9、三角波发生器原理图 2.3锯齿波发生器 波形数据如图10所示:此处只选取了64个数据,(这在数据rom定制中可以修改) 图10、锯齿波发生器数据 锯齿波发生器的顶层设计 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all;   entity sawtooth_out is    port(        clk: in std_logic;        dout: out std_logic_vector(7 downto 0)    ); end entity;   architecture transmit of sawtooth_out is    component sawtooth        port(           address: in std_logic_vector(5 downto 0);           clock: in std_logic;           q: out std_logic_vector(7 downto 0)        );    end component; signal q1 : std_logic_vector(5 downto 0);--由于是64个数据,所以此--处只有5位地址线     begin    process(clk)    begin        if(rising_edge(clk)) then           q1=q1+1;        end if;    end process;    u1: sawtooth port map(clock=clk,address=q1,q=dout); end architecture; 原理图符号生成如图11所示: 图11锯齿波发生器原理图符号 2.4方波发生器模块 数据表如图12所示: 图12、方波发生器数据 方波发生器顶层设计: library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all;   entity fangbo_out is    port(        clk: in std_logic;        dout: out std_logic_vector(7 downto 0)    ); end entity;   architecture transmit of fangbo_out is    component fangbo        port(           address: in std_logic_vector(6 downto 0);           clock: in std_logic;            q: out std_logic_vector(7 downto 0)        );    end component; signal q1 : std_logic_vector(6 downto 0);   begin    process(clk)    begin        if(rising_edge(clk)) then           q1=q1+1;        end if;    end process;    u1: fangbo port map(clock=clk,address=q1,q=dout); end architecture; 方波发生器的原理图13所示: 图13、方波发生器原理图 注:在以上的顶层设计中,只是相对于定制的rom模块来说是顶层设计,并不是整个设计的顶层设计,每一个发生器的顶层设计中均需要调用已生成的IP核,即rom模块,这就需要先进行被调用模块的声明,然后还需要对其进行例化才能正确调用。 三、4选1多路选择器的设计 4选1多路选择器由4路8输入端及两条选择线控制,输出为1路8输出信号。当选择输入信号sel与输出的对应关系见具体设计。 具体实现如下所示: library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all;   entity mux4_1 is    port(        rst: in std_logic;        din4,din3,din2,din1: in std_logic_vector(7 downto 0);        sel: in std_logic_vector(1 downto 0);        q: out std_logic_vector(7 downto 0)    ); end entity; architecture sel of mux4_1 is begin    process(sel,din4,din3,din2,din1,rst)    begin        if rst='0' then           q="00000000";                     --复位        else           case sel is                        --输入选择控制               when "00"= q=din1;               when "01"= q=din2;               when "10"= q=din3;               when "11"= q=din4;               when others= q=din1;           end case;        end if;    end process; end architecture; 生成的原理图文件如图14所示: 图14、 4选1多路选择器 四、DAC0832外部电路的设计:如图15所示:DAC0832的具体使用介绍网上已有很多资料介绍,本设计不再单独列出,可参照网上。本设计的DAC0832的引脚图如下所示: 图15、DAC0832的引脚图 DI0~DI7:数据输入线,TLL电平。 ILE:数据锁存允许控制信号输入线,高电平有效。 CS:片选信号输入线,低电平有效。 WR1:为输入寄存器的写选通信号。 XFER:数据传送控制信号输入线,低电平有效。 WR2:为DAC寄存器写选通输入线。 Iout1:电流输出线。当输入全为1时Iout1最大。 Iout2: 电流输出线。其值与Iout1之和为一常数。 Rfb:反馈信号输入线,芯片内部有反馈电阻. Vcc:电源输入线  (+5v~+15v) 。 Vref:基准电压输入线  (-10v~+10v) 。 AGND:模拟地,摸拟信号和基准电源的参考地.。 DGND:数字地,两种地线在基准电源处共地比较好。 D/A转换结果采用电流形式输出。若需要相应的模拟电压信号,可通过一个高输入阻抗的线性运算放大器实现。运放的反馈电阻可通过RFB端引用片内固有电阻,也可外接。 控制时序如图16所示: 图16、DAC0832的控制时序图 具体设计如下所示: library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all;   entity DAC0832 is    port(din     :in std_logic_vector(7 downto 0);        --data input        rst     :in std_logic;        cs      :out std_logic;                          --控制信号cs        wr1     :out std_logic;                          --控制信号wr1        dout:out std_logic_vector(7 downto 0)        --波形数据输出        );         end DAC0832;  architecture behav of DAC0832 is begin     process(rst)     begin        if rst='0' then            cs='1';            wr1='1';            dout="00000000";        else            cs='0';            wr1='0';            dout=din;                   --cs、wr1赋值;波形数据输出;        end if;     end process; end behav; 注:以上设计中没有涉及到的控制引脚信号,已利用外部硬件对应的连到地或电源线上了。 具体生成的原理图符号如图16所示: 图16、DAC0832控制模块原理图文件 将以上所生成的各部分按对应关系连接在顶层文件中,即构成了整个设计,具体如下(图17)可放大     六、仿真结果如下所示: 6.25MHz的正弦波 12.5 MHz的正弦波   6.25 MHz的方波   12.5 MHz的方波 6.25 MHz的三角波   12.5 MHz的三角波        6.25 MHz的锯齿波 12.5 MHz的锯齿波    
相关资源