tag 标签: D类放大器

相关博文
  • 热度 28
    2014-11-2 23:22
    1276 次阅读|
    0 个评论
    广受欢迎的555定时器可用作乐器或其他应用的PWM/D类放大器。其可在4.5V~16V的电源电压范围内工作,并可输出200mA的驱动电流。音频信号被传送至555定时器的CV( 控制电压)引脚。 本设计实例为耳机和音频线路提供两个简单、便宜的驱动器,分别如图1、图2所示。这两个驱动器针对电吉他和小提琴设计,但也可适用于更多其他应用。对于这样的简单应用而言,噪声和总谐波失真(THD)并不是重点考虑因素,因此并未对这两个数值进行测量。 图1:含运算放大器和NE555定时器的耳机和音频线路驱动器。也可以使用CMOS版本(如LMC555),但输出电流较低。其优点为工作频率较高。 (点击查看大图) 下述为一些设计考虑因素: ● CV引脚的输入电阻约为3kΩ,在大多数音频应用中,需要某种音频前置放大器/缓冲器。 ● CV需要极大幅度的输入音频信号。所需的幅度取决于555定时器的电源和所需的输出音频功率。 ● 555定时器作为振荡器使用,通过施加至CV的较低频音频信号对其进行调制。振荡频率应最好至少为最大所需音频频率的10倍。对音频应用而言,频率应介于60kHz至200kHz之间。这样就简化了555定时器所产生的高频噪声的滤除,并维持了高切换效率。 ● 需留意射频发射。至少应在555定时器的输出端和扬声器或耳机间设置一个一阶低通滤波器。若电缆较长,则应考虑电缆寄生电容(最好为双绞线)。 通过A v1 =1+R6/R12这一公式,第一级增益由R6和R12设定为约11。 CV上无输入模拟信号时的定时器的频率取决于R7、R8及C5的值,其标准计算公式如下: f=1.44/((R7+2R8)×C5)(Hz) NE555的输出信号传输至连接器OUT1、OUT2和OUT3。R9、C7和负载可作为低通滤波器,用于滤除定时器产生的高频分量。若未经滤波,这些分量会产生辐射,导致放大器周围的敏感电子设备出现问题。应尽量降低滤波器的截止频率,并选用具有较高电阻的耳机。 《电子技术设计》网站版权所有,谢绝转载 结型场效应晶体管(JFET)版本 电路也可使用场效应晶体管或双极型晶体管来获取高输入阻抗,放大NE555之前的音频信号。 电路的输入级构建于JFET T1周围。电阻器R4*和R5*应具有最小适用值。它们应产生一定增益,且具有低输出阻抗以驱动555定时器。在无输入信号的情况下,A点和B点之间的直流电压约为V EE /3。该电路比图1所示的电路要简单,但可能需要根据所选用的晶体管T1和第一级所需的电压增益,对R4*和R5*进行调整。此处的问题是,给定类型的JFET参数的差别可能超过4:1。当开关S1闭合时,T1的增益设置为最大值。 图2:含JFET输入和NE555的耳机/线路驱动器。 (点击查看大图) 双极型晶体管T2可提高JFET的驱动能力。此外,其还支持使用较高的R4*数值,从而增加T1的电压增益。 图3所示电路采用两个工作在不同频率下的555定时器,以获取不同的音效。 图3:采用两个工作在不同频率下的555定时器电路,以获取不同的音效。 (点击查看大图) 结论 这类电路可在555定时器的整个电压范围(4.5V~16V)内运行,但更高的+V EE (如12V~16V)为首选。这将产生更多输出功率,大多数运算放大器和JFET在该电压范围内运行效果更佳。 这类电路可驱动高阻抗扬声器和耳机—超过24Ω的为首选。不管在何种情况下,较好的做法是使555定时器的峰值输出电流保持在150mA以下。这样将把芯片的功耗保持在可接受的程度内。若输出电流远高于100mA,555定时器输出晶体管的压降会快速增加。 《电子技术设计》网站版权所有,谢绝转载
  • 热度 19
    2014-6-30 14:30
    884 次阅读|
    0 个评论
      为电子产品选择合适的器件是一项非常复杂的事情,常常要在许多方面反复进行折中,例如D类音频放大器就是这种器件。   下面通过一个假设的应用,例如由墙上电源适配器或碱性电池供电的手机或个人媒体播放器(PMP)底座,来介绍选择这类放大器的过程。    市场推广的需求   市场人员可能对产品提出很多具体建议,从一个很小的细节(例如,应该使用立体声扬声器),到一堆要求与竞争产品相媲美的指导意见。市场人员也可能提出让产品符合业界的性能标准(如Microsoft Windows Vista或Dolby Digital认证)。   在我们的项目中(PMP底座或外置音箱),我们假设市场人员要求产品在采用电池供电时,声音要尽可能大,工作时间要尽可能长,而且当电池快耗尽时应该温和适度地降低性能,使用两个直径50mm、功率为3W的8Ω扬声器。我们进一步假设,市场人员没有对底座的传输带宽、线性度或信噪比(SNR)提出更多的意见。   电路约束   如果产品有两个电源,一个是稳压的12V墙上电源适配器,一个是可选的碱性电池组(采用新电池时的标称电压为9V,在电能快耗尽时的电压为6V)。   输出 功率决定了放大器所需的输出级拓朴。为向8Ω负载提供每通道3W的功率,需要4.90Vrms左右的供电电压,或是6.93V的峰值电压。由于单端(半桥)布局即使在最好的供电条件下也无法产生所需的功率,必须采用BTL(全桥)拓扑。   进一步说,在最差(6V)的供电电压时,即使BTL放大器也不能产生维持3W输出所需的6.93V峰值电压。不过这可能不是问题,因为接近完全放电的电池一般不可能提供两个3W扬声器所需的电流了。最终的产品将可以实现市场人员所说的“温和降级”的特点。   物理/机械约束   D类音频放大器的效率要远高于线性(AB类)放大器。换言之,如果要给负载提供一个给定的输出功率,D类放大器在散热上浪费的功率要远小于相同输出功率的AB类放大器。   有必要检查是否需要特殊的热设计。假设,现在有一个合适的立体声D类放大器,可以在4.5V电压下工作,由正常工作的电源供电,可以输出2×3W的足够功率。   在2×3W输出功率(驱动两个通道)的条件下,效率与输出功率的关系图如图所示,从图中可见,器件的典型效率是82%。当有了这个指标之后,可由下式得出在这些条件下的散热功率。   η=Pout/Pin=Pout/(Pout+Pdiss)   Pdiss=Pout×(1-η)/η   这里,η为百分比。   图  效率与输出功率的关系曲线   立体声输出是6W(2×3W),效率是82%,可以计算出Pdiss=1.32W,这可不是一个小数字。采用器件建议的封装,不太容易把热量散发出去,所以把热量散发出去的唯一办法是通过PCB板上的镀铜。   因此,在PCB布局阶段需要注意,确保暴露在器件下的引脚是与PCB板连在一起的,通过多条路径连到焊料侧的带铜接地上。在成本和封装约束允许的情况下,在PCB板上暴露的铜面应该尽可能大,以便将放大器产生的热量散出去。   这时,D类放大器的评估板是非常有帮助的,生产商提供的PCB布局和元器件的放置位置可以做为很好的参考,并可以通过实验室测试,知道器件在加负载情况的温升,并确保在高温下器件不会关断或发生误动作。   EMI约束   D类放大器的输出级会在电源轨之间快速地开和关,从而达到此类器件所特有的高效率。对放置在放大器附近的其他设备和电路来说,这种快速上升和跌落时间所产生的EMI是非常有害的。虽然对于采用D类放大器时,如何进行折中以满足RF辐射标准的详细分析超出了本文的论述范围,下面列出一些可供参考的指导意见。   首先是要了解产品必须满足的辐射标准,以及在满足标准的前提下希望留出的裕量。   不要假设所用的D类放大器的开关频率是300kHz,不会碰到30MHz或以上的情况,超出这个频段范围的辐射经常被检测。在100倍基本开关频率的声频段,都会出现难以消除的EMI辐射。   扬声器的引线实际上是一个有效的RF辐射天线。引线越长,会出现EMI问题的频率就越低。   如果在扬声器前使用了LC滤波器,截止频率为20kHz,就必须检查电感在整个EMI辐射频率范围内是否能够正常工作。   如果在底座外壳内有足够的空间和充足的PCB板面积,在设计PCB板原型时就可以有多个滤波器设计方案,这样就可以在产品进行EMC测试时尝试不同的方案,以达到所需的性能。   一些放大器提供商发布了在给定的电缆长度和滤波器元件的条件下,评估套件的RF辐射性能测试结果,这样就大大方便了工程师着手进行设计。为了从源头上减少EMI,大多数新型D类放大器都使用了专利的调制技术,以保证音频质量和效率。   供应链约 束   不幸的是,在为产品仔细选择器件之后,要由许多非工程方面的因素来决定是否采用这种器件。下面是一些可能碰到的问题。   ● 供应商是否通过了采购认证?   ● 器件供应商的技术支持人员是否胜任?   ● 后续成本满足目标要求吗?   ● 对供货商能够以所需的数量提供稳定可靠的产品是否有信心?   细节设计   在任何音频系统设计中,精细的外观可以增加(或减少)用户对产品的整体体验。在选择各个音频部件的增益时,应在避免出现扬声器限幅失真的条件下,使整体的增益结构能够达到高音量。但也不能使增益过大,避免噪声超出可接受的音量水平。   应该使在开机和关机时出现的瞬态噪声最小化,但要抑制噪声,产品、价位和用户体验都会发生变化。对喀嗒声的抑制性能最终是由放大器决定的。一些生产商在数据表中给出了典型的喀嗒声抑制参数,这样就可以在进行听觉测试前,对不同器件进行比较。
  • 热度 25
    2012-8-16 16:47
    1932 次阅读|
    2 个评论
     作者:飞兆半导体公司 Bill Llewellyn   最近这些年,许多包含电动扬声器(powered speaker)的便携设备得到了快速发展——包括手机、MP3播放器、GPS系统、膝上型电脑和笔记本电脑、平板电脑、游戏机、玩具等等。在这些应用中,通常选用的驱动扬声器的音频放大器类型被称为“D类”(或开关)放大器,因为相比传统的AB类放大器设计,这类放大器的散热较少(在紧凑型产品中非常 重要),且效率较高(延长电池寿命)。D类放大器开关拓扑的一个可能存在的缺点,就是其容易发出电磁辐射,可能会干扰周边其它电子设备。可以通过外部无源 滤波方法将这种干扰缓减到某种程度,但这会增加最终产品的成本、占位面积以及复杂性。本文将探讨某些用于减轻EMI问题的内部电路设计方法。 边缘速率控制 为了放大音频信号,D类放大器的输出(或各种输出,以不同的配置) 在两个电源轨(通常为正极和接地)之间交替切换,其频率是所需放大的最高音频频率的10倍或更高(可能为300kHz或更高)。开关信号是经过调制的,从 而通过简单的、有时是扬声器本身包含的低通滤波器来恢复音频信号。此开关转换一般速度非常快——也许是2ns或更短——因而包含显著的高频能量。这会导致 互连导线缆产生EMI辐射,尤其是在信号路径中无低通滤波器,以及放大器和扬声器之间的导线长度是非常明显的情形下(也许超过1cm)。 用于缓减EMI辐射的一个方法是减低放大器输出的转换速率(slew rate)。图1所示为时域中的一个例子,其上方迹线有2ns的上升和下降时间,而下方迹线有20ns的上升和下降时间。   图1. 具有2ns和20ns转换时间的D类放大器输出波形 转换速率的减小(这里的因数为10) 对于D类放大器产生的辐射能量有着显著的影响。图2 显示了两种波形的频谱,此时D类输出正处于静默(无音频,占空比=50%),开关频率为333kHz。可以看到贯穿于30MHz至1GHz之间的大部分频 谱,其高频(HF)内容减少约20dB。在包含有FM广播接收电子设备(88MHz – 108MHz)和/或手机或无线互联网电路(700MHz – 2.7GHz)的系统中,这可大幅减少EMI,从而降低了可能影响系统性能的风险。   图2. 在2ns(红色)和20ns(蓝色)上升和下降时间的D类输出频谱 图2清楚地显示了边缘速率控制(edge rate control,ERC)技术减少EMI的优势,不过代价是增加了损耗。首先是D类放大器提供的效率优势,主要来自于输出器件始终完全开启或完全关闭,因 此输出器件中的瞬时耗散功率,P= VI,在所有时间里基本上保持为零 (不同于AB类放大器,其功率器件的VI乘积从不为零)。在每次开关转换时引入(或增加)时间跨度,其间V ≠ 0,同时负载电流I ≠ 0,导致片上功耗适度增加,因而带来效率的降低。其次,一个非ERC输出级在本质上仅是一个大型逆变器(可能包括直通或短路冲击电流的缓减),而一个 ERC输出级包含附加电路,能够调节上拉和下拉器件的触发电压,以便在输出端上产生期望的、受控制的转换速率。取决于所使用的方法,这增加了芯片面积(成 本)和电流消耗(降低效率)。总的来说,由于增添ERC而产生的效率代价可能为1-2%。 扩频时钟 上述讨论的边缘速率控制(ERC)是一个有效的方法,可减弱在30MHz以上频率范围产生的EMI (也受限于FCC法规的限制),而D类放大器开关输出的基本载波频率和其落在30MHz以下范围的相关奇次谐波(方波),则不太好采用这项技术来处理。图 3所示为此频带出现的由传统的、未修改的D类放大器输出产生的能量。   图3.  无扩频时脉的D类输出频谱 为了减小D类输出频谱中的基音和泛音尖峰高度,可以在放大器的时钟电路中加入少量频率调制——也许调制指数在+/-5%左右,不会影响所放大音频信号的质 量。虽然针对调制信号源的特性有许多选择,一个常规作法是使用带有重复频率(全模式重复频率)的伪随机模式,其超出最高预期音频信号频率(通常为 20kHz)一个适当的余量,这可防止产生可能落入音频频带的音调。 图4显示了和图3所示相同的D类输出,但其带有+/-5%调制,在40kHz模式重复频率下由伪随机序列来实现。   图4. 带有扩频时脉的D类输出频谱   图5. 带有(蓝色)和未带有(棕色)扩频时脉的D类输出频谱 图5显示了图3和图4颜色叠加后的图片,更清楚地显示了由扩频时脉带来的差异。能够看见在整个频谱范围内,基准时钟频率的奇次谐波被抑制了将近10dB。 单边调制 可以采用一种附加方法来减少EMI,通过修改调制方案,当音频基带信号振幅变得足够大时,允许单边差分或桥式D类输出对停止切换。这本质上允许反向输出, 一直持续到开关,以便进行全面调制,将输出信号保持在剩余间隔直至其最高峰值。在此方案下,在很大比例时间内(取决于音频源材料),仅有一个输出在开关, 因而EMI(在那个时间内)减少了一半。这增加了优势,减少了由于功率器件门和其它寄生电容充放电带来的固定开关损耗。它还缩短了输出在ERC转换方面的 时间,如上所述,该转换有少量的效率代价。此技术的缺点是放大器的整体前向增益会有些许降低,同样地,总体谐波失真(total harmonic distortion,THD)和噪声也有少量增加。   图6. 过滤的差分D类输出和未过滤的正向和反向开关输出,显示单边调制的作用   图7. 带有(绿色)和未带有(蓝色)单边调制的D类输出频谱 结论  D类放大器通常用于便携设备,因其功率效率超过传统AB类放大器。D类技术的主要缺点是其固有的EMI,会对周边电子设备产生不利影响。现在已经出现了一些所熟知,并很有效的IC设计技术,能够极大地缓解EMI问题,而无需负担额外的外部元件。  
相关资源
  • 所需E币: 4
    时间: 2019-12-28 19:28
    大小: 280.25KB
    上传者: wsu_w_hotmail.com
    作者:EricGaalaas音频放大器的用途是在发声输出元件上复现输入音频信号,提供所需要的音量和功率水平——保证复现的忠实性、高效率以及低失真度。在这一任务面前,D类放大器表现出多方面的优势。音频是指约20Hz到20kHz的频率范围,因此一个音频放大器在这个频段上必须具备出色的频率响应特性(在驱动频带有限的低音和高音扬声器时,频响特性较好的频率范围可更窄些)。功率能力方面的需求则变化很大,具体指标取决于应用要求,从头戴式耳机的mW级到TV或PC影响上的数W,再到“微型”家庭立体声音响、汽车音响,而最高者是功率更强的家用和用于剧场和礼堂的商用音响系统,其功率达到数百W甚至更高。音频放大器最直截了当的、模拟式的实现方式是让晶体管工作在线性模式下,让输出电压以一定比例随输入信号电压变化。前向的电压增益往往很高(至少40dB)。如果前向增益是反馈回路的一部分,则总的回路增益也将很高。电路中常常要采用反馈,因为很高的环路增益可以提供更高的性能——抑制前向通路的非线性所造成的失真,并通过提高电源抑制能力(PSR)来减小电源噪声。D类放大器背后的奥秘AB类电路必须采取某种类似于B类电路的控制机制,以便能够提供或者吸纳很大的输出电流。作者:EricGaalaas一种不同的拓扑结构――D类放大器――的出现,是值得庆幸的事,它所消耗的功率远低于其他任何一种电路。其输出级在音频放大器的用途是在发声输出元件上复现输入音频信号,提正、负电源之间来回切换,以便产生一个电压脉冲链。这一波供所需要的音量和功率水平――保证复现的忠实性、高效率以形对于降低功率耗散来说是有利的,因为输出晶体管在不发生及低失真度。在这一任务面前,D类放大器表现出多方面的优开关动作时电流为零,而在导通电流时其两端电压很低,因此势。IDS×VDS值更小。音频是指约20Hz到20kHz的频率范围,因此一个音频放大器因为……
  • 所需E币: 5
    时间: 2019-12-28 21:28
    大小: 1.45MB
    上传者: 二不过三
    D类放大器的布板指南www.eetchina.comD类放大器电路板布局指南作者:JohnWidder和SimoneFerri意法半导体公司(ST)介绍如果没有遵循一些基本的布局指南,PCB设计将会限制D类放大器的性能或降低其可靠性。下面描述了D类放大器一些好的PC板布局实践经验。采用带有两个BTL输出的STA517B(每通道175瓦)数字功率放大器作为范例,但对所有的D类放大器而言,其基本概念是一致的。图1:立体声BTLD类功率放大器原理图地平面良好的地平面是优质D类放大器布局的关键。如果可能应将电路板的底层作为一个专有的地平面,完整的地平面可以提供最佳性能和最可靠的设计。如果你不得不在电路板的底层布信号线或电源走线,须尽可能的短。如果必要,为了使底层走线短距离,应将走线引回到电路板的顶层,从而避免在底层长距离走线。利用过孔将电路板的顶层器件与电路板底层的地平面连接。但是,过孔仍会堵塞电流回流到地平面,因此须灵活的使用这些过孔。直接在放大器之下的区域须敷铜。如果放大器在其封装的底部有一个裸露的焊盘或插件,那么IC必须焊接到放大器下放的地,如此可以作为放大器的扇热区。在这种情况下,地必须从IC正下方向两边引出,这样可以确保其裸露。放大器下面的地须打上许多过孔,通过过孔向电路板的底层扇热,因此它还可以作为一个扇热区域。www.eetchina.co……
  • 所需E币: 5
    时间: 2019-12-28 21:33
    大小: 241.92KB
    上传者: 978461154_qq
    D类放大器原理详解及应用设计指南1……
  • 所需E币: 5
    时间: 2019-12-28 21:34
    大小: 73.63KB
    上传者: givh79_163.com
    D类放大器的效率与AB类放大器的比较……
  • 所需E币: 5
    时间: 2019-12-28 21:34
    大小: 5.25KB
    上传者: 978461154_qq
    D类放大器原理详解及应用设计指南3……
  • 所需E币: 3
    时间: 2019-12-28 21:34
    大小: 57.56KB
    上传者: 16245458_qq.com
    D类放大器原理详解及应用设计指南2……
  • 所需E币: 4
    时间: 2019-12-28 23:11
    大小: 299.16KB
    上传者: 微风DS
    由于功效高于AB类放大器,D类放大器对便携式音频应用设计人员来说更具吸引力。但是,也有一些设计者并未在便携式应用中使用D类放大器,因为传统的PWM型D类放大器需要庞大且昂贵的滤波元件来降低电磁干扰。Maxim公司的D类放大器扩谱调制技术则让设计者可以省去这些滤波元件,又不会降低音频性能或放大功效,因此有效推动了高效D类放大器在便携式音频应用中的推广。……
  • 所需E币: 3
    时间: 2020-1-6 12:33
    大小: 517.1KB
    上传者: givh79_163.com
    TI的单片无滤波器D类音频功率放大器TPA2013D1能为各种便携式应用提供恒定输出功率,如个人导航设备、PDA、移动电话、便携式媒体播放器以及手持式游戏机等。……
  • 所需E币: 3
    时间: 2020-1-6 12:56
    大小: 183.82KB
    上传者: 2iot
    关键名词D类放大器,TPA3001D1,TPA3002D2主要器件文章类别功率与电源器件,出售人厂商名称德州仪器公司作者信息作者:德州仪器公司MikeScore摘要内容尽管D类放大器推出已经有一段时间了,但许多人仍不理解D类放大器工作的基本原理,也不明白其为什么会提供更高效率。本文将解释脉宽调制(PWM)信号是如何创建的,以及说明您听到的是音频频率而非PWM波形的开关频率。本文将详细说明输出PWM波形为什么比输出线性波形效率高很多,还将说明为什么某些D类放大器要求LC过滤器,而某些则不需要。……
  • 所需E币: 4
    时间: 2020-1-6 13:25
    大小: 10.5KB
    上传者: givh79_163.com
    用555制作的D类放大器……
  • 所需E币: 5
    时间: 2020-1-6 14:00
    大小: 32.5KB
    上传者: 978461154_qq
    555制作的D类放大器……
  • 所需E币: 3
    时间: 2019-12-28 23:58
    大小: 398.16KB
    上传者: wsu_w_hotmail.com
    D类放大器的高效特性,使其成为便携工和大功率应用的理想选择.传统D类放大器需要一个外部低通滤波器,以从脉宽调制信号(PWM)输出小型中提取音频信号.……