tag 标签: 双芯核心板

相关博文
  • 2024-11-1 16:38
    276 次阅读|
    0 个评论
    1.引言 随着网络视频平台的发展,用户对于4K高清画质的需求日益增长。然而,许多用户发现,即使购买了视频平台的会员,观看4K内容时画质却不如预期,有时甚至还会出现模糊、卡顿的情况。这种现象背后涉及到视频编码、网络带宽、和视频传输的诸多因素。 近期“影视飓风”发布的视频《清晰度不如4年前!视频变糊是你的错觉吗?》因讨论视频平台降低码率和改变编码格式以压缩视频画质,影响了内容表达。 4K视频清晰度下降的一个主要原因是平台为了节省带宽而压缩视频流,有时导致比特率降低,无法发挥4K分辨率的全部潜力。 在这种背景下,如何 高效地压缩和传输4K视频成为了一个关键技术难题 。本文将探讨如何通过 米尔电子的ZU4EV MPSoC平台, 接入真4k 60UHD-SDI视频源后,使用VCU进行高效H.265编解码,再通过 SGMII万兆以太网 实现 网络推流,以确保高质量4K视频的流畅传输。 2.视频质量下降的原因与优化方法 1) 带宽瓶颈 :在用户数量增加的情况下,服务器和网络的带宽常常无法满足4K视频流的需求。 2) 压缩算法不足 :传统的视频压缩技术在高分辨率内容上表现不佳,容易导致画面模糊。 3) 视频流传输的优化 在推流过程中,网络带宽和视频压缩效率直接决定了视频播放的清晰度与流畅度。为了确保4K视频在万兆以太网上的高效传输,本设计采用以下优化措施: 合理的码率控制 :在保证视频清晰度的前提下,调整H.265编码的目标码率,避免过低的码率影响视频质量或过高的码率导致带宽浪费或。通过CBR或VBR模式可以根据网络情况动态调整码率。 低延时模式 :VCU支持低延时编码模式,确保视频在压缩和传输过程中保持尽可能低的延迟,提升用户的观看体验。 网络传输协议选择 :根据应用场景选择合适的传输协议。对于实时性要求较高的场景,可选择UDP传输,而对于数据可靠性要求较高的场景,则推荐使用TCP协议。 3.MPSoC与VCU架构在4K UHD音视频广播领域的优势 1. 高性能与低功耗的结合 :Zynq UltraScale+ MPSoC采用了16nm FinFET工艺,集成了多核处理器和可编程逻辑,能够在提高性能的同时降低功耗,这对于音视频广播领域来说至关重要,因为它可以在保证高清晰度视频传输的同时,减少能源消耗。 2. 实时压缩与解压缩能力 :集成的VCU支持H.264/AVC和H.265/HEVC标准,能够实现高达4K UHD分辨率的视频的实时压缩和解压缩。这意味着在广播应用中,可以利用VCU进行高效的视频编码,减少存储空间和带宽的需求,同时保持视频质量。 3. 多视频流处理能力 :VCU能够同时处理多达八个不同的视频流,这对于需要同时广播多个视频源的4K UHD广播应用来说非常有用。这种多任务处理能力使得MPSoC成为多媒体中心和视频服务器的理想选择。 4. 灵活性和可扩展性 :MPSoC的可编程逻辑(PL)提供了任意到任意高速视频/音频接口的灵活性,可以为多媒体管道带来定制图像及视频处理功能的差异化效果。这种可编程性使得系统能够适应不断变化的音视频广播需求。 5. 专用硬件加速 :MPSoC提供了专用的处理引擎,如基于ARM Cortex A53的APU、Mali图形处理单元等,这些专用硬件能够加速图形和视频处理任务,提高系统的整体性能。 6. 支持多种视频格式 :VCU支持高达4:2:2 10位UHD-4K的视频格式,适合专业和高端消费级的制作与后期制作解决方案。这种广泛的格式支持使得MPSoC可以应用于各种不同的音视频广播场景。 7. 集成的多媒体框架支持 :MPSoC结合常见的多媒体框架GStreamer,可以开发硬件加速型多媒体应用。这种集成支持简化了开发过程,使得开发者能够快速实现复杂的音视频处理任务。 8. 优化的功耗管理 :Zynq UltraScale+ MPSoC将处理引擎、硬件编解码器等组件放置在具有独立电轨的不同电源域中,这种配置可用于为整个系统设计优化功耗管理方案,进一步降低系统功耗。 9. 高速互联外设 :MPSoC提供高速互联外设,如集成式DisplayPort接口模块,支持高达6 Gb/s的工作速率,这有助于处理来自PS或PL的实时音视频流,进一步降低系统BOM成本。 10. 支持新一代地面数字电视广播技术 :随着超高清电视时代的到来,MPSoC与VCU架构能够支持新一代地面数字电视广播技术,如DVB-T2、ATSC 3.0和DTMB-A等,这些技术支持更高的视频质量和新的广播应用模式。 综上所述,MPSoC与VCU架构在4K UHD音视频广播领域提供了高性能、低功耗、实时压缩解压缩、多视频流处理、灵活性、硬件加速、广泛格式支持、多媒体框架集成、优化的功耗管理和高速互联外设等多重优势,使其成为该领域理想的解决方案。 4.系统架构概述 在本设计中,我们使用Zynq UltraScale+ MPSoC平台(具体型号为MYIR XCZU4EV),通过FPGA实现对SDI视频的H265压缩,并通过SGMII接口推送到万兆以太网上。系统架构主要包括以下几个部分: 1. 视频输入 :输入源可以是SDI摄像机、SDI信号发生器或通过HDMI转SDI设备从电脑接入的HDMI信号。视频信号通过TI公司的LMH1219芯片做均衡处理,并将单端信号转换为差分信号后输入FPGA。 2. SDI视频解码 :FPGA中的UHD-SDI GT IP核用于SDI视频的解串,并将视频信号转换为AXI4-Stream格式供后续处理。通过SMPTE UHD-SDI RX SUBSYSTEM IP核,SDI视频被解码为RGB格式。 3. 视频帧缓存与处理 :解码后的视频信号存储在PS侧的DDR4中,通过Xilinx提供的Video Frame Buffer Write IP核实现。在这一阶段,可以对视频帧进行颜色转换、缩放等处理。 4. H.265视频压缩 :使用Zynq UltraScale+ VCU IP核对存储的RGB视频帧进行H.265编码压缩。VCU支持YUV420格式的视频,编码分辨率最高可达到4K@60fps。 5. SGMII万兆以太网传输 :经过H.265压缩后的视频流通过SGMII接口推送至万兆以太网。通过PetaLinux系统,利用TCP/UDP协议将压缩后的码流传输到PC或服务器端,用户可以通过VLC播放器等软件实时播放接收到的H.265码流。 5.工程设计主要流程 1. SDI输入 :通过LMH1219进行信号均衡,SDI信号转换为AXI4-Stream格式。 通过HDMI转SDI盒子,通过12G UHD-SDI输出4K 60FPS视频给FPGA,用户也可以使用SDI 工业相机; 2. 视频解码 :UHD-SDI GT IP核完成视频解串,SMPTE UHD-SDI RX SUBSYSTEM IP核将视频解码为RGB信号。 3. 视频缓存 :使用Video Frame Buffer Write IP核将视频写入DDR4。 用户可以选择在这里做出customer ISP,例如图像缩放,拼接 4. 视频压缩 :通过Zynq UltraScale+ VCU IP核对视频进行H265压缩。 5. 网络传输 :通过SGMII万兆以太网接口,将压缩后的H265视频流通过UDP协议推送至PC端,使用VLC播放器播放。 6.结论 在视频内容不断向4K发展的大背景下, 通过Zynq UltraScale+ MPSoC平台,基于VCU实现的SGMII万兆以太网视频压缩推流方案,不仅能够高效地压缩和传输4K视频,还可以确保较低的延迟和高质量的图像输出。该方案适用于视频监控、医疗影像、工业自动化等对高分辨率视频有需求的应用场景。 对于希望在网络视频平台上获得更好观看体验的用户来说,视频平台和服务提供商则需要在视频编码、网络传输等方面进行优化,以满足用户对于4K视频的画质需求。 7.互动环节 在SGMII网兆以太网推流到PC端,因为是万兆网,CPU无法负担这里的高速吞吐率,这里我们需要用到网络卸载,米尔电子的MYC-J7A100T双芯设计核心板可通过SFP采集SGMII万兆以太网数据后,PC通过PCIE读取视频源,实现万兆网口数据包卸载,我们会在后续系列文章中做出分享基于米尔MYC-J7A100TSFP采集后PCIE XDMA中断读取。
  • 热度 1
    2024-9-14 14:56
    277 次阅读|
    0 个评论
    随着物联网(IoT)、工业自动化、医疗设备等领域对嵌入式系统的需求不断增加。嵌入式核心板(SOM)作为嵌入式系统的核心组件,其市场需求也随之增长。在快速发展的同时,也面临一定的挑战: 如进口芯片供应链不可控、单一平台受地域政策限制、多平台产品开发周期长、开发难度高 等问题,米尔电子设计开发了纯FPGA 开发平台,支持一款平台,双芯设计,支持同款底板可换国产和进口芯片,推出MYIR 7A100T和PG2L100H核心板,解决客户对国内国际市场的不同需求。 国产 开发维护与 进口 主流出货痛点 痛点 一 政策受限, 国内与 海外客户 对产品有不同 需求 MYIR推出FPGA 开发平台具有极高的灵活性,用户可以根据项目需求自由选择AMD XC7A100T 和紫光同创PG2L100H这两款核心板,共享同一底板平台,可以实现无缝切换,在地缘政治不确定的环境下,双平台策略可以适应国内国际市场的不同需求。 痛点 二 维护主流与国产替代两款平台 开发 周期长,难度大 MYIR 7A100T和PG2L100H两款核心板均采用260PIN MXM金手指封装形式,方便在开发生产过程中快速插拔、更换,极大简化了开发与测试工作。用户可以根据项目需求选择国产或进口平台,极大地提高了开发和部署的灵活性。 MYIR FPGA开发平台优势 优势 一 行业应用案列丰富 米尔推出的FPGA开发平台基于同一底板,提供了国产与进口双芯选择,满足了不同区域市场的需求。后面结合其在软件定义无线电(SDR)、电力监测及工业自动化等领域的实际应用,展示这一平台的强大潜力。 优势 二 产品稳定,生命周期长 米尔嵌入式核心板在应用于各种复杂环境时,经过严格的高低温测试、压力测试、信号完整性测试等,以确保其稳定性和可靠性。 行业应用案例详解 应用一、软件定义无线电(SDR)应用 应用场景 :软件定义无线电(SDR)是目前通信领域的热点技术,广泛应用于国防、商业通信以及科研领域。7A100T和PG2L100H核心板凭借其出色的FPGA性能和灵活的编程能力,成为SDR项目中的理想选择。它能够支持多种无线通信协议,并在不更换硬件的情况下,通过重配置实现不同频段和制式的切换。 案例分析 :在某无线通信公司开发的SDR设备中,7A100T核心板被用于处理中频信号和基带数据。借助其强大的逻辑资源和高速数据处理能力,该设备能够灵活应对不同频段的信号处理需求,显著提升了设备的通用性和稳定性。 技术优势 :7A100T核心板集成了大量DSP模块和可编程逻辑单元,支持复杂信号调制解调的高速处理。同时,其低功耗特性使其能够在电池供电的环境下长时间运行,满足便携式设备的需求,在开发稳定后,对于国内信创终端客户替换为PG2L100H核心板,国际客户稳定出7A100T核心板,实现国际国内市场双赢。 图:SDR设备架构示意图 应用二:电力监测与智能电网应用 应用场景 :电力监测是保障电网安全运行的关键环节。FPGA的实时处理能力使其成为电力监测系统中的重要组成部分。7A100T和PG2L100H核心板凭借其稳定的性能和低功耗特性,在电力监测与智能电网中得到了广泛应用。 案例分析 :在某智能电网项目中,PG2L100H核心板被用于电压、电流和功率因子的实时监测。该系统通过对电网关键数据的高速处理和分析,能够及时发现异常并做出预警,有效防止电力事故的发生。 技术优势 :PG2L100H的高密度逻辑单元和多通道ADC接口,使其能够处理海量的实时数据,同时支持大规模并行运算。这一特性在复杂电力系统中的应用尤其突出,确保了数据处理的速度和准确性,之后客户放在官网的产品信息获得巴西某水电站关注,客户无缝替换为7A100T核心板供应给巴西终端,极大满足了终端对于开发时效紧急性和稳定以及出口认证资质等要求 图:智能电网监控系统示意图 应用 三:工业自动化控制应用 应用场景 :工业自动化是现代制造业的核心,涉及复杂的运动控制、机器视觉和数据采集等多个环节。7A100T核心板由于其可靠性和高性能,被广泛应用于工业自动化控制系统中。 案例分析 :某大型制造企业在其生产线升级中采用了7A100T核心板,用于运动控制和视觉检测。通过该核心板的高速数据处理能力和灵活的I/O接口,企业成功提升了生产线的效率和产品质量。 技术优势 :7A100T支持多轴运动控制、实时数据采集以及高精度的图像处理。其丰富的外围接口和强大的逻辑资源,使得控制系统能够应对各种复杂工况,实现全自动化生产,客户在对于国内特种装备行业同样的工业运动控制卡需求时,无缝替换为PG2L100H核心板,极快的加速了产品开发,认证上市时间。 图:工业自动化控制应用示意图 结语:全国产自主与国际标准的结合 米尔的FPGA平台为用户提供了双芯选择的可能,无论是需要国际认可的高端项目,还是对成本与安全性要求更高的国内项目,都能在这一平台上找到合适的解决方案。PG2L100H核心板基于国产紫光自主研发的芯片,代表了国内FPGA技术的发展方向。它不仅满足了对高安全性、高可靠性的要求,也实现了与国际标准的兼容性。MYIR的双芯平台凭借其灵活的双芯片选择和强大的性能,为各行业提供了全面的解决方案。无论是针对国际市场的高端应用,还是国内市场的自主创新需求,米尔的7A100T和PG2L100H FPGA平台都能满足开发者的多样化需求。未来,随着技术的不断进步和更多应用场景的开发,MYIR的FPGA开发平台将成为FPGA领域的标杆选择。​ 图:开发平台框图 MYIR的7A100T和PG2L100H FPGA开发平台通过其一体化设计、灵活的双芯选择和出色的行业适应性,为众多应用场景提供了强大的支持。从软件定义无线电到电力监测,再到工业自动化控制,平台已在多个领域展现了其不可替代的价值。