tag 标签: 傅里叶

相关帖子
相关博文
  • 热度 20
    2015-5-12 16:17
    7565 次阅读|
    13 个评论
    学习 傅里叶变换 需要面对大量的数学公式,数学功底较差的同学听到 傅里叶变换 就头疼。事实上,许多数学功底好的数字信号处理专业的同学也不一定理解 傅里叶变换 的真实含义,不能做到学以致用!   事实上,傅里叶变换的相关运算已经非常成熟,有现成函数可以调用。对于绝大部分只需用好傅里叶变换的同学,重要的不是去记那些枯燥的公式,而是解傅里叶变换的含义及意义。   本文试图不用一个数学公式,采用较为通俗的语言深入浅出的阐述傅里叶变换的含义、意义及方法,希望大家可以更加亲近傅里叶变换,用好傅里叶变换。   一伟大的傅里叶、伟大的争议!   1807年,39岁的法国数学家傅里叶于法国科学学会上展示了一篇论文(此时不能算发表,该论文要到21年之后发表),论文中有个在当时极具争议的论断:“任何连续周期信号可以由一组适当的正弦曲线组合而成”。   这篇论文,引起了法国另外两位著名数学家拉普拉斯和拉格朗日的极度关注!        58岁的拉普拉斯赞成傅里叶的观点。   71岁的拉格朗日(貌似现在的院士,不用退休)则反对,反对的理由是“正弦曲线无法组合成一个带有棱角的信号” 。屈服于朗格朗日的威望,该论文直到朗格朗日去世后的第15年才得以发表。   之后的科学家证明:傅里叶和拉格朗日都是对的!   有限数量的正弦曲线的确无法组合成一个带有棱角的信号,然而,无限数量的正弦曲线的组合从能量的角度可以非常无限逼近带有棱角的信号。   二傅里叶变换的定义   后人将傅里叶的论断进行了扩展:满足一定条件的函数可以表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。如何得到这个线性组合呢?这就需要傅里叶变换。   一定条件是什么呢?   这是数学家研究的问题,对于大多数搞电参量测量的工程师而言,不必关注这个问题,因为,电参量测量中遇到的周期信号,都满足这个条件。   这样,在电参量测量分析中,我们可以用更通俗的话来描述傅里叶变换:   任意周期信号可以分解为直流分量和一组不同幅值、频率、相位的正弦波。分解的方法就是傅里叶变换。   并且,这些正弦波的频率符合一个规律:是某个频率的整数倍。这个频率,就称为基波频率,而其它频率称为谐波频率。如果谐波的频率是基波频率的N倍,就称为N次谐波。直流分量的频率为零,是基波频率的零倍,也可称零次谐波。   三傅里叶变换的意义   1为什么要进行傅里叶变换呢?   傅里叶变换是描述信号的需要。   只要能反映信号的特征,描述方法越简单越好!   信号特征可以用特征值进行量化。   所谓特征值,是指可以定量描述一个波形的某种特征的数值。全面描述一个波形,可能需要多个特征值。   比如说:正弦波可以用幅值和频率两个特征值全面描述;方波可以用幅值、频率和占空比三个特征值全面描述(单个周期信号不考虑相位)。   上述特征值,我们可以通过示波器观测实时波形获取,称为时域分析法。事实上,许多人都习惯于时域分析法,想要了解一个信号时,一定会说:“让我看看波形!”   可是,除了一些常见的规则信号,许多时候,给你波形看,你也看不明白!   复杂的不讲,看看下面这个波形,能看出道道吗?        我们能看到的仅仅是一个类似正弦波的波形,其幅值在按照一定的规律变化。   如何记载这个波形的信息呢?尤其是量化的记载!   很难!   事实上,上述波形采用傅里叶变换后,就是一个50Hz的正弦波上叠加一个40Hz的正弦波,两者幅度不同,40Hz的幅度越大,波动幅度就越大,而波动的频率就是两者的差频10Hz(三相异步电动机叠频温升试验时的电流波形)。 再看一个看似简单的波形: 本文引用地址: http://www.eepw.com.cn/article/272577.htm        这个波形有点像正弦波,但是,比正弦波尖,俗称“尖顶波”,多见于变压器空载电流输入波形。   我们很难准确定量其与正弦波的区别。   采用 傅里叶变换 后,得到下述频谱(幅值谱):        主要包括3、5、7、9次谐波,一目了然!    傅里叶变换 是一种信号分析方法,让我们对信号的构成和特点进行深入的、定量的研究。把信号通过频谱的方式(包括幅值谱、相位谱和功率谱)进行准确的、定量的描述。   这就是 傅里叶变换 的主要目的。   现在,我们知道傅里叶变换的目的了, 剩下的问题是:   2为什么傅里叶变换要把信号分解为正弦波的组合,而不是方波或三角波?   其实,如果张三能够证明, 任意信号可以分解为方波的组合,其分解的方法不妨称为张三变换;李四能够证明,任意信号可以分解为三角波的组合,其分解的方法也可以称为李四变换。   傅里叶变换是一种信号分析的方法。既然是分析方法,其目的应该是把问题变得更简单,而不是变得更复杂。傅里叶选择了正弦波,没有选择方波或其它波形,正好是其伟大之处!   正弦波有个其它任何波形(恒定的直流波形除外)所不具备的特点:正弦波输入至任何线性系统,出来的还是正弦波,改变的仅仅是幅值和相位,即:正弦波输入至线性系统,不会产生新的频率成分(非线性系统如变频器,就会产生新的频率成分,称为谐波)。用单位幅值的不同频率的正弦波输入至某线性系统,记录其输出正弦波的幅值和频率的关系,就得到该系统的幅频特性,记录输出正弦波的相位和频率的关系,就得到该系统的相频特性。   线性系统是自动控制研究的主要对象,线性系统具备一个特点,多个正弦波叠加后输入至一个系统,输出是所有正弦波独立输入时对应输出的叠加。   也就是说,我们只要研究正弦波的输入输出关系,就可以知道该系统对任意输入信号的响应。   这就是傅里叶变换的最主要的意义!   四如何求傅里叶变换?   文章开始就说了,具体求傅里叶变换,有成熟的函数可供调用。本文只讲述如何理解傅里叶变换的思想。如果你掌握了这个思想,不用再记公式,也不用去调用什么函数,自己编个简单程序就可实现。就算你不会编程,只要你学过三角函数,至少可以理解傅里叶变换的过程。   傅里叶的伟大之处不在于如何进行傅里叶变换,而是在于给出了“任何连续周期信号可以由一组适当的正弦曲线组合而成”这一伟大的论断。   知道了这一论断,只要知道正弦函数的基本特性,变换并不难,不要记公式,你也能实现傅里叶变换!   正弦函数有一个特点,叫做正交性,所谓正交性,是指任意两个不同频率的正弦波的乘积,在两者的公共周期内的积分等于零。   这是一个非常有用的特性,我们可以利用这个特性设计一个如下的检波器(下称检波器A):   检波器A由一个乘法器和一个积分器构成,乘法器的一个输入为已知频率f的单位幅值正弦波(下称标准正弦信号f),另一个输入为待变换的信号。检波器A的输出只与待变换信号中的频率为f的正弦分量的幅值和相位有关。        待变换信号可能包含频率为f的分量(下称f分量),也可能不包含f分量,总之,可能包含各种频率分量。一句话,待变换信号是未知的,并且可能很复杂!   没关系,我们先看看,待变换信号是否包含f分量。   因为其它频率分量与标准正弦信号f的乘积的积分都等于零,检波器A可以当它们不存在!经过检波器A,输出就只剩下与f分量有关的一个量,这个量等于待变换信号中f分量与标准正弦信号f的乘积的积分。   很容易得到的结论是:   如果输出不等于零,就说明输入信号包含f分量!   这个输出是否就是f分量呢?   答案:不一定!   正弦波还有下述的特性:   相同频率的正弦波,当相位差为90°时(正交),在一个周期内的乘积的积分值等于零;当相位相同时,积分值达到最大,等于两者的有效值的乘积,当相位相反时,积分值达到最小,等于两者的有效值的乘积取反。   我们知道标准正弦信号f的初始相位为零,但是,我们不知道f分量的初始相位!如果f分量与标准正弦信号f的相位刚好差90°(或270°),检波器A输出也等于零!为此,我们再设计一个检波器B:   检波器B与检波器A的不同之处在于检波器B用一个标准余弦信号f(与标准正弦信号A相位差90°)替代滤波器A中的标准正弦信号f。如果待变换信号中包含f分量,检波器A和检波器B至少有一个输出不等于零。        利用三角函数的基础知识可以证明,不论f分量的初始相位如何,检波器A和检波器B输出信号的幅值的方和根就等于f分量的幅值;而检波器B和检波器A的幅值的比值等于f分量初始相位的正切,如此如此……即可求出f分量的相位。   我们再把标准正弦信号f和标准余弦信号f的频率替换成我们关心的任意频率,就可以得到输入信号的各种频率成分。如果知道输入信号的频率,把这个频率作为基波频率f0,用f0、2f0、3f0依次替代标准正弦信号f和标准余弦信号f的频率,就可以得到输入信号的基波、2次谐波和3次谐波。   这就是傅里叶变换!   什么?不会积分?   没有关系,实际上,在谐波检测仪、电能质量分析仪等各类电参量测量仪器中,现在用的都是基于交流采样的离散傅里叶变换,在离散信号处理中,累加就是积分!   傅里叶变换就是这么简单,您学会了吗?
  • 热度 6
    2015-5-12 16:12
    3052 次阅读|
    2 个评论
    傅里叶变换是将时域信号分解为不同频率的正弦和/余弦和的形式。傅里叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析。 详见附件!
  • 热度 4
    2015-5-12 15:56
    11289 次阅读|
    1 个评论
    一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:http://www.dspguide.com/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830),Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。 当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace,1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。 三、傅立叶变换分类 根据原信号的不同类型,我们可以把傅立叶变换分为四种类别: 1 非周期性连续信号 傅立叶变换(Fourier Transform) 2 周期性连续信号 傅立叶级数(Fourier Series) 3 非周期性离散信号 离散时域傅立叶变换(Discrete Time Fourier Transform) 4 周期性离散信号 离散傅立叶变换(Discrete Fourier Transform) 下图是四种原信号图例: 这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。面对这种困难,方法是把长度有限的信号表示成长度无限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离解信号,我们就可以用到离散时域傅立叶变换的方法。还有,也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离解信号,这时我们就可以用离散傅立叶变换方法进行变换。这里我们要学的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。 但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。 每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶就更容易了,所以我们先把复数的傅立叶放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。 还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。 四、傅立叶变换的物理意义 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 五、图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。 傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。 另外我还想说明以下几点: 1、图像经过二维傅立叶变换后,其变换系数矩阵表明: 若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。 2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。
  • 热度 5
    2015-5-12 15:37
    2620 次阅读|
    2 个评论
    这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 昨天上一篇文章发出来之后,大家真是很下工夫啊,有拿给姐姐看的,有拿给妹妹看的,还有拿给女朋友看的,就是为了听到一句“完全看不懂啊”。幸亏我留了个心眼,不然就真的像标题配图那样了。 我的文章题目是,如果看了这篇文章你“还”不懂就过来掐,潜台词就是在你学了,但是没学明白的情况下看了还是不懂,才过来掐死我。 这里郑重感谢大连海事大学的吴楠老师,一位学识渊博、备课缜密、但授课不拘一格的年轻教师!当时大三他教我通信原理,但是他先用了4结课帮我们复习了很多信号与系统的基本概念,那个用乐谱代表频域的概念就是他讲的,一下子让我对这门课豁然开朗,才有了今天的这篇文章。 ———今天的定场诗有点长——— 下面继续开始我们无节操的旅程: 上次的关键词是:从侧面看。 这次的关键词是:从下面看。 在第二课最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。 先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生——频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事: 先在纸上画一个sin(x),不一定标准,意思差不多就行。不是很难吧。 好,接下去画一个sin(3x)+sin(5x)的图形。 别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧? 好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。 但是在频域呢?则简单的很,无非就是几条竖线而已。 所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。 再说一个更重要,但是稍微复杂一点的用途——求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。 傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。 下面我们继续说相位谱: 通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。 鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。 这里需要纠正一个概念:时间差并不是相位差。如果将全部周期看作 2Pi 或者 360 度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘2Pi,就得到了相位差。 在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。下次偷看女生裙底被发现的话,可以告诉她:“对不起,我只是想看看你的相位谱。” 注意到,相位谱中的相位除了0,就是Pi。因为cos(t+Pi)=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2Pi)=cos(t),所以相位差是周期的,pi和3pi,5pi,7pi都是相同的相位。人为定义相位谱的值域为(-pi,pi],所以图中的相位差均为 Pi。 最后来一张大集合: 好了,你是不是觉得我们已经讲完傅里叶级数了? 抱歉让你失望了,以上我们讲解的只是傅里叶级数的三角函数形式。接下去才是最究极的傅里叶级数——指数形式傅里叶级数。但是为了能更好的理解指数形式的傅里叶级数,我们还需要一个工具来帮忙——欧拉公式。 欧拉公式,以及指数形式的傅里叶级数,我们下一讲再讲。谢谢大家(鞠躬)。 今天讲的部分不多,但是我希望大家能够理解,我也有自己的生活,留给知乎的时间并不多,但是我很喜欢在知乎与别人交流的过程。上一次的那些文章大家知道我当时写了多久么?四天,每天写6小时那种,而且当时还是在假期。主要是图太不好做了,有人问到作图的方法,其实就是简单的MATLAB+PHOTOSHOP,作图的确是很费时间,但是我相信做出这些图是值得的,因为我相信图一定比文字更好理解。也希望可以将这些自己学习时的感受和经验更完整的分享给需要的人。 所以请大家稍微有点耐心,我会认真把这个故事讲完。也谢谢大家的理解和支持。 喜欢本文,请分享给好友,大家的鼓励才是分享的动力!
  • 热度 26
    2014-12-26 17:07
    1151 次阅读|
    1 个评论
    作者:陈德恒  一博科技 本文由一博科技自媒体“看得懂的高速设计”出品,欢迎关注我们微信公众号:“一博看得懂的高速设计”。高速先生愿意与你随时随地交流技术问题。   最近高速先生粉丝增长很快,得益于各位朋友的大力推荐。其中有一位朋友推荐我们公众号时是这样说的“给大家分享一个公众号,这是我见过最无聊的公众号!一天到晚只说技术,真是弄不明白做硬件的人是怎么想的啊!哇哈哈哈哈哈哈哈哈”。对于这位朋友,高速先生只想说,您真是太(bu)有(hui)眼(xin)光(shang)啦(a)!   高速先生出道以来,接到了大量朋友的提问,很大一部分问题几种在基础理论上。很明显大家都是有思考过的,对一些东西处于明白但又有点不明白的区间,还差一层窗户纸没有捅破。   所以高速先生写出这样一篇文章,希望能帮助大家捅破这层窗户纸。   基础理论篇幅较长,所以这一系列文章会分比较多期。   前言   在国外能碰到许多二三十年工作经验的工程师,帮助他们沟通的工具不是PPT,不是仿真结果,不是测试结果,而是一张纸和一支笔。   很佩服他们可以用一张纸一支笔给你勾绘出一个电路,一条波形,一种debug的方案。曾有一个老工程师告诉我,当你用场的角度去理解电路上的器件的时候,一切将会变得简单起来。   什么叫场的角度理解分立器件?在这个世界里,容抗是Xc=1/(2πfC) ,感抗是XL= 2πfL=ωL 。   这两个公式中的f与ω指的不是我们的信号频率,而是正弦波的频率与角频率。   在这里,我们要感谢伟大的让•巴普蒂斯•约瑟夫•傅立叶——简称傅立叶,对,就是发明傅立叶变化的那个人。   所以在大家眼中看到的信号是这样的:   而在一个SI工程师的眼中看到的信号是这样的:   或者,这样的:   当我们能将信号分解为一个一个正弦波来研究的时候,一切都变简单了,可以量化了。在正弦波的世界中只有频率f,幅度A,相位θ。   现在,我们可以愉快的用场来看这个世界了。   让我们来思考下面这个问题:   一个1V的正弦波在某岔路口分成了两个大小相等的正弦波,两条路通向同一个终点,但是一条路长为L,另外一条路长度为L+X,在终点的时候,这个正弦波变成了什么?   当两条岔路一样长时:   终点的信号和起点的信号没有区别。   当一条路比另一条多二十分之一波长时:   区别也十分小吧?高速先生在这里特别打上了mark点。大家可以看到,终点的信号比起点的信号衰减了1.2%。   X更长,达到八分之一波长时:   这时候,衰减已经不需要打mark点也可以看出来了。   X再长一点,达到四分之一波长时:   30%的能量不见了!   直到,X达到波长一半的长度:   好惨,完全阵亡。   那么,这一期的问题是:为什么高速先生要举这个例子呢?   好吧,这个问题也是个玩笑(首尾呼应)。这一系列的基础理论详解就不提问题了。奖品将在向我们提问的各位朋友中选出。   我们下期分解。
相关资源