所需E币: 0
时间: 2023-11-27 11:13
大小: 5.15KB
自动驾驶是高安全型应用,需要高性能和高可靠的深度学习模型,VisionTransformer是理想的选摔。现在主流的自动驾驶感知算法基本都使用了VisionTransformer相关技术,比如分割、2D/3D检测,以及最近大火的大模型(如SAM),VisionTransformer在自动驾驶领域的落地方面遍地开花。5一方面,在自动驾驶或图像处理相关算法岗位的面试题中,VisionTransformer是必考题,需要对其理论知识有深入理解,并且在项目中真实的使用过相关技术。Transformer出自于Google于2017年发表的论文《Attentionisallyouneed》,最开始是用于机器翻译,并且取得了非常好的效果。但是自提出以来,Transformer不仅仅在NLP领域大放异彩,并且在CV、RS等领域也取得了非常不错的表现。尤其是2020年,绝对称得上是Transformer的元年,比如在CV领域,基于Transformer的模型横扫各大榜单,完爆基于CNN的模型。为什么Transformer模型表现如此优异?它的原理是什么?它成功的关键又包含哪些?本文将简要地回答一下这些问题。我们知道Transformer模型最初是用于机器翻译的,机器翻译应用的输入是某种语言的一个句子,输出是另外一种语言的句子。vari*int=nilfmt.Println("i.size:",unsafe.Sizeof(i))//8vari8*int8=nilfmt.Println("i8.size:",unsafe.Sizeof(i8))//8vars*string=nilfmt.Println("s.size:",unsafe.Sizeof(s))//8varps*struct{}=nilfmt.Println("ps.size:",unsafe.Sizeof(ps))//8varsi[]int=nilvarsi1[]int=nilfmt.Println("si.size:",unsafe.Sizeof(si))//24variiinterface{}=nilfmt.Println("ii.size:",unsafe.Sizeof(ii))//16我们以生成我,爱,机器,学习,翻译成<bos>,i,love,machine,learning,<eos>这个例子做生成过程来解释。训练:把“我/爱/机器/学习”embedding后输入到encoder里去,最后一层的encoder最终输出的outputs[10,512](假设我们采用的embedding长度为512,而且batchsize=1),此outputs乘以新的参数矩阵,可以作为decoder里每一层用到的K和V;将<bos>作为decoder的初始输入,将decoder的最大概率输出词向量A1和‘i’做crossentropy(交叉熵)计算error。将<bos>,“i”作为decoder的输入,将decoder的最大概率输出词A2和‘love’做crossentropy计算error。将<bos>,“i”,“love”作为decoder的输入,将decoder的最大概率输出词A3和’machine’做crossentropy计算error。将<bos>,“i”,"love",“machine”作为decoder的输入,将decoder最大概率输出词A4和‘learning’做crossentropy计算error。将<bos>,“i”,"love",“machine”,“learning”作为decoder的输入,将decoder最大概率输出词A5和终止符做crossentropy计算error。那么并行的时候是怎么做的呢,我们会有一个mask矩阵在这叫seqmask,因为他起到的作用是在decoder编码我们的targetseq的时候对每一个词的生成遮盖它之后的词的信息。funcmain(){s:=[]string{"a","b","c"}fmt.Println("s:origin",s)changes1(s)fmt.Println("s:f1",s)changes2(s)fmt.Println("s:f2",s)changes3(s)fmt.Println("s:f3",s)}funcchanges1(s[]string){vartmp=[]string{"x","y","z"}s=tmp}funcchanges2(s[]string){//item只是一个副本,不能改变s中元素的值fori,item:=ranges{item="d"fmt.Printf("item=%s;s[%d]=%s",item,i,s[i])}}funcchanges3(s[]string){fori:=ranges{s[i]="d"}}首先我们需要为每个输入向量(也就是词向量)创建3个向量,分别叫做Query、Key、Value。那么如何创建呢?我们可以对输入词向量分别乘上3个矩阵来得到Q、K、V向量,这3个矩阵的参数在训练的过程是可以训练的。注意Q、K、V向量的维度是一样的,但是它们的维度可以比输入词向量小一点,比如设置成64,其实这步也不是必要的,这样设置主要是为了与后面的Mulit-head注意力机制保持一致(当使用8头注意力时,单头所处理的词向量维度为512/8=64,此时Q、K、V向量与输入词向量就一致了)。我们假设输入序列为英文的"ThinkingMachines"想要深度理解Attention机制,就需要了解一下它产生的背景、在哪类问题下产生,以及最初是为了解决什么问题而产生。首先回顾一下机器翻译领域的模型演进历史:机器翻译是从RNN开始跨入神经网络机器翻译时代的,几个比较重要的阶段分别是:SimpleRNN,ContextualizeRNN,ContextualizedRNNwithattention,Transformer(2017),下面来一一介绍。「SimpleRNN」:这个encoder-decoder模型结构中,encoder将整个源端序列(不论长度)压缩成一个向量(encoderoutput),源端信息和decoder之间唯一的联系只是:encoderoutput会作为decoder的initialstates的输入。这样带来一个显而易见的问题就是,随着decoder长度的增加,encoderoutput的信息会衰减。funcmain(){varc=make(chanint)fmt.Printf("c.pointer=%p\n",c)//c.pointer=0xc000022180gofunc(){c<-1addChannel(c)close(c)}()foritem:=rangec{//item:1//item:2fmt.Println("item:",item)}}funcaddChannel(donechanint){done<-2fmt.Printf("done.pointer=%p\n",done)//done.pointer=0xc000022180}在测试模型的时候,Test:decoder没有label,采用自回归一个词一个词的输出,要翻译的中文正常从encoder并行输入(和训练的时候一样)得到每个单词的embedding,然后decoder第一次先输入bos再此表中的id,得到翻译的第一个单词,然后自回归,如此循环直到预测达到eos停止标记typevisitstruct{a1 unsafe.Pointera2 unsafe.PointertypType}funcdeepValueEqual(v1,v2Value,visitedmap[visit]bool)bool{if!v1.IsValid()||!v2.IsValid(){returnv1.IsValid()==v2.IsValid()}ifv1.Type()!=v2.Type(){returnfalse}//Wewanttoavoidputtingmoreinthevisitedmapthanweneedto.//Foranypossiblereferencecyclethatmightbeencountered,//hard(v1,v2)needstoreturntrueforatleastoneofthetypesinthecycle,//andit'ssafeandvalidtogetValue'sinternalpointer.hard:=func(v1,v2Value)bool{switchv1.Kind(){casePointer:ifv1.typ.ptrdata==0{//not-in-heappointerscan'tbecyclic.//Atleast,allofourcurrentusesofruntime/internal/sys.NotInHeap//havethatproperty.Theruntimeonesaren'tcyclic(andwedon'tuse//DeepEqualonthemanyway),andthecgo-generatedonesare//allemptystructs.returnfalse}fallthroughcaseMap,Slice,Interface://Nilpointerscannotbecyclic.Avoidputtingtheminthevisitedmap.return!v1.IsNil()&&!v2.IsNil()}returnfalse}ifhard(v1,v2){//ForaPointerorMapvalue,weneedtocheckflagIndir,//whichwedobycallingthepointermethod.//ForSliceorInterface,flagIndirisalwaysset,//andusingv.ptrsuffices.ptrval:=func(vValue)unsafe.Pointer{switchv.Kind(){casePointer,Map:returnv.pointer()default:returnv.ptr}}addr1:=ptrval(v1)addr2:=ptrval(v2)ifuintptr(addr1)>uintptr(addr2){//Canonicalizeordertoreducenumberofentriesinvisited.//Assumesnon-movinggarbagecollector.addr1,addr2=addr2,addr1}//Shortcircuitifreferencesarealreadyseen.typ:=v1.Type()v:=visit{addr1,addr2,typ}ifvisited[v]{returntrue}//Rememberforlater.visited[v]=true}switchv1.Kind(){caseArray:fori:=0;i<v1.Len();i++{if!deepValueEqual(v1.Index(i),v2.Index(i),visited){returnfalse}}returntruecaseSlice:ifv1.IsNil()!=v2.IsNil(){returnfalse}ifv1.Len()!=v2.Len(){returnfalse}ifv1.UnsafePointer()==v2.UnsafePointer(){returntrue}//Specialcasefor[]byte,whichiscommon.ifv1.Type().Elem().Kind()==Uint8{returnbytealg.Equal(v1.Bytes(),v2.Bytes())}fori:=0;i<v1.Len();i++{if!deepValueEqual(v1.Index(i),v2.Index(i),visited){returnfalse}}returntruecaseInterface:ifv1.IsNil()||v2.IsNil(){returnv1.IsNil()==v2.IsNil()}returndeepValueEqual(v1.Elem(),v2.Elem(),visited)casePointer:ifv1.UnsafePointer()==v2.UnsafePointer(){returntrue}returndeepValueEqual(v1.Elem(),v2.Elem(),visited)caseStruct:fori,n:=0,v1.NumField();i<n;i++{if!deepValueEqual(v1.Field(i),v2.Field(i),visited){returnfalse}}returntruecaseMap:ifv1.IsNil()!=v2.IsNil(){returnfalse}ifv1.Len()!=v2.Len(){returnfalse}ifv1.UnsafePointer()==v2.UnsafePointer(){returntrue}for_,k:=rangev1.MapKeys(){val1:=v1.MapIndex(k)val2:=v2.MapIndex(k)if!val1.IsValid()||!val2.IsValid()||!deepValueEqual(val1,val2,visited){returnfalse}}returntruecaseFunc:ifv1.IsNil()&&v2.IsNil(){returntrue}//Can'tdobetterthanthis:returnfalsecaseInt,Int8,Int16,Int32,Int64:returnv1.Int()==v2.Int()caseUint,Uint8,Uint16,Uint32,Uint64,Uintptr:returnv1.Uint()==v2.Uint()caseString:returnv1.String()==v2.String()caseBool:returnv1.Bool()==v2.Bool()caseFloat32,Float64:returnv1.Float()==v2.Float()caseComplex64,Complex128:returnv1.Complex()==v2.Complex()default://NormalequalitysufficesreturnvalueInterface(v1,false)==valueInterface(v2,false)}}这便是encoder的整体计算流程图了,Transformer模型中堆叠了多个这样的encoder,无非就是输出连接输入罢了,常规操作。最后再附上一个Transformer的代码实现,读者有兴趣可以跟着自己复现一下Transformer模型的代码。 packagemain import( "log" "sync" ) funcinit(){ log.SetFlags(log.Lshortfile) } funcmain(){ lock:=sync.Mutex{} //Go1.18新增,是一种非阻塞模式的取锁操作。当调用TryLock()时, //该函数仅简单地返回true或者false,代表是否加锁成功 //在某些情况下,如果我们希望在获取锁失败时,并不想停止执行, //而是可以进入其他的逻辑就可以使用TryLock() log.Println("TryLock:",lock.TryLock()) //已经通过TryLock()加锁,不能再次加锁 lock.Lock() }