tag 标签: mosfet

相关博文
  • 2023-2-1 15:22
    182 次阅读|
    0 个评论
    光电耦合器和光耦合 MOSFET之间的差异 介绍 光电耦合器 /光耦合器和固态继电器(光电MOSFET或光耦MOSFET(OCMOS FET))在保持电隔离的同时传输信号,但存在一些重要差异。 结构差异 下图显示了光电耦合器和 OCMOS FET的主要内部结构。 如左边的光电耦合器所示,当发光二极管( LED)点亮光电晶体管时,光会产生从集电极流向光电晶体管基极的光电流。因此,当LED不亮时,光电晶体管被切断,当LED强烈点亮时,从集电极流向基极的大光电流,光电晶体管稳定导通。与基极集电极简单地短路不同,即使集电极-发射极电压小于晶体管的基极-发射极正向电压,光电流仍然流动,光电晶体管是导电的。 另一方面,如上图所示, OCMOS FET集成了光伏电池,当LED亮起时,光伏电池对栅极电容充电以增加栅源电压,在接通型触点的情况下打开MOSFET。对于断断型触点,FET在无栅源电压的情况下具有导电性。然而,当LED点亮时,光伏电池反向偏置栅源电压,切断FET。当成组型OCMOS FET关闭时,光伏电池不仅停止充电,而且内部放电开关自动关闭,迫使栅极放电。结果,栅极-源极电压立即下降。 OCMOS FET中的两个FET反向串行连接在一起。因此,当OCMOS FET导电时,两个FET都是双向导电的。然而,当OCMOS FET不导电时,只有正向的FET与施加的电压切断,而另一个FET的寄生二极管导通。 特征差异 由于上述结构差异,光电耦合器和 OCMOS FET具有以下特性差异: 1. 虽然光电耦合器在输出中仅传导直流(直流电),但 OCMOS FET可以在场效应管中同时传导直流和交流(交流电) 2. 通常,光电耦合器的工作速度以微秒或更快为单位,而 OCMOS FET的工作速度则慢至毫秒。 3. 虽然光电耦合器的输出导通特性因输入电流值而异,但 OCMOS FET的输出导通特性与输入电流值无关。 4. 通常和理论上,光电耦合器变得与输入相对应的导电。但是, OCMOS FET有两种:一种是传导的(a触点:使接型触点),另一种是当施加输入时断开(b触点:断点型触点)。 因此,虽然 OCMOS FET不能像光电耦合器那样高速运行,但OCMOS FET可以用小输入电流(小至几毫安)切换交流电和安培范围内的大电流。 应用差异 通常,光电耦合器仅用于传输直流信号。其应用包括传统数字电路中的脉冲传输和开关稳压器中误差反馈电路的模拟直流信号传输。 脉冲传输(在传统数字电路中) 模拟直流信号传输(用于开关稳压器等的错误反馈电路) 另一方面,由于 OCMOS FET的工作速度比光电耦合器慢,因此很少用于信号传输。然而,由于MOSFET的双向导通和低导通电阻特性,它主要用作间歇交流信号的“电子开关”。因此,OCMOS FET也称为固态继电器(SSR)。
  • 热度 5
    2022-10-19 16:44
    961 次阅读|
    0 个评论
    MOSFET等开关器件可能会受各种因素影响而失效。因此,不仅要准确了解产品的额定值和工作条件,还要全面考虑电路工作中的各种导致失效的因素。本系列文章将介绍MOSFET常见的失效机理。 ・MOSFET的SOA(Safety Operation Area)失效 ・MOSFET的雪崩失效 ・MOSFET的dV/dt失效 什么是SOA(Safety Operation Area)? SOA是“Safety Operation Area”的缩写,意为“安全工作区”。要想安全使用MOSFET,就需要在SOA范围内使用MOSFET,超过这个范围就有可能造成损坏。在SOA范围之外工作时造成的损坏称为“SOA失效”。例如,SJ MOSFET(Super Junction MOSFET)R6024KNX的SOA如下所示: SJ MOSFET R6024KNX的SOA SOA由纵轴上的漏极电流ID和横轴上的漏源电压VDS来表示。也就是说,VDS、ID及它们的乘积(功率损耗PD)、以及二次击穿区决定了MOSFET的安全工作范围。另外,施加功率的脉冲宽度PW也是决定SOA的重要因素。SOA划分为图中所示的(1)~(5)个区域。 SOA的区域划分、限制以及与失效之间的关系 下面介绍一下图中的区域(1)~(5)。 ■区域(1):漏极电流ID受MOSFET的导通电阻RDS(ON)限制的区域 是指即使施加的VDS小于绝对最大额定值,ID也会受到RDS(ON)限制的区域。根据欧姆定律I=V/R,ID只能流到红线位置。  ※图中的区域是VGS=10V时的示例 ■区域(2):由施加脉冲时漏极电流的绝对最大额定值IDP决定的区域 (2)的绿线是规格书中规定的IDP的绝对最大额定值。当然,绝对最大额定值是绝对不能超过的,因此当IDP超过该值时是无法使用的。如果在超过该值的范围(电流值)使用,由于超出了保证的工作范围,因此可能会造成损坏。 ■区域(3):热限制区域 这是由MOSFET的容许损耗PD决定的区域。受施加功率的脉冲宽度PW和瞬态热阻的限制。只要在该范围内,Tj通常不会超过绝对最大额定值TjMAX,因此可以安全使用。但是请注意,该线会因环境温度、MOSFET的实际安装条件和散热条件等因素而异。此外,作为开关使用MOSFET时,可能会瞬间被施加高电压和大电流,因此即使在开关的瞬态状态下也必须注意不要超过区域(3)的限制。 ■区域(4):二次击穿区域 当在施加高电压的状态下流过电流时,元器件内部的局部可能会流过大电流并造成损坏,这称为“二次击穿”。这条线是用来防止造成二次击穿状态的限制线。与区域(3)的热限制区域一样,二次击穿区域也受环境温度等因素的影响。 ■区域(5):由MOSFET漏源电压的绝对最大额定值VDSS决定的区域 这是规格书中规定的受VDSS限制的区域,如果超过这个区域,就可能发生击穿并造成损坏。需要注意的是,由反激电压和寄生电感引起的电压变化,可能会瞬间超过该限制。 什么是雪崩击穿 当向MOSFET施加高于绝对最大额定值BVDSS的电压时,就会发生击穿。当施加高于BVDSS的高电场时,自由电子被加速并带有很大的能量。这会导致碰撞电离,从而产生电子-空穴对。这种电子-空穴对呈雪崩式增加的现象称为“雪崩击穿”。在这种雪崩击穿期间,与 MOSFET内部二极管电流呈反方向流动的电流称为“雪崩电流IAS”,参见下图(1)。 MOSFET的雪崩失效电流路径示意图(红色部分) 雪崩失效:短路造成的失效 如上图所示,IAS会流经MOSFET的基极寄生电阻RB。此时,寄生双极型晶体管的基极和发射极之间会产生电位差VBE,如果该电位差较大,则寄生双极晶体管可能会变为导通状态。一旦这个寄生双极晶体管导通,就会流过大电流,MOSFET可能会因短路而失效。 雪崩失效:热量造成的失效 在雪崩击穿期间,不仅会发生由雪崩电流导致寄生双极晶体管误导通而造成的短路和损坏,还会发生由传导损耗带来的热量造成的损坏。如前所述,当MOSFET处于击穿状态时会流过雪崩电流。在这种状态下,BVDSS被施加到MOSFET并且流过雪崩电流,它们的乘积成为功率损耗。这种功率损耗称为“雪崩能量EAS”。雪崩测试电路及其测试结果的波形如下图所示。此外,雪崩能量可以通过公式(1)来表示。 雪崩测试的电路简图 雪崩测试中MOSFET的电压和电流波形 雪崩能量公式 一般情况下,有抗雪崩保证的MOSFET,在其规格书中会规定IAS和EAS的绝对最大额定值,因此可以通过规格书来了解详细的值。在有雪崩电流流动的工作环境中,需要把握IAS和EAS的实际值,并在绝对最大额定值范围内使用。 引发雪崩击穿的例子包括反激式转换器中的MOSFET关断时的反激电压和寄生电感引起的浪涌电压等。针对反激电压引起的雪崩击穿,对策包括在设计电路时采用降低反激电压的设计或使用具有更高耐压性能的MOSFET。而针对寄生电感引起的雪崩击穿,改用引脚更短的封装的MOSFET或改善电路板布局以降低寄生电感等都是比较有效的措施。 什么是dV/dt失效 如下图(2)所示,dV/dt失效是由于MOSFET关断时流经寄生电容Cds的瞬态充电电流流过基极电阻RB,导致寄生双极晶体管的基极和发射极之间产生电位差VBE,使寄生双极晶体管导通,引起短路并造成失效的现象。通常,dV/dt越大(越陡),VBE的电位差就越大,寄生双极晶体管越容易导通,从而越容易发生失效问题。 MOSFET的dV/dt失效电流路径示意图(蓝色部分) 此外,在逆变器电路或Totem-Pole PFC等上下桥结构的电路中,反向恢复电流Irr会流过MOSFET。受该反向恢复电流影响的dV/dt,可能会使寄生双极晶体管误导通,这一点需要注意。dV/dt失效与反向恢复特性之间的关系可以通过双脉冲测试来确认。双脉冲测试的电路简图如下: 双脉冲测试的电路简图 dV/dt和反向恢复电流的仿真结果如下图所示。设MOSFET①~③的栅极电阻RG和电源电压VDD等电路条件相同,仅反向恢复特性不同。图中列出了Q1从续流工作转换到反向恢复工作时的漏源电压VDS和漏极电流(内部二极管电流)ID。 双脉冲测试的仿真结果 一般情况下,与MOSFET①相比,MOSFET③可以说是“反向恢复特性较差(Irr和trr大)”的产品。从这个仿真结果可以看出,反向恢复特性越差,dV/dt的坡度就越陡峭。这一点通过流经电容器的瞬态电流通常用I=C×dV/dt来表示也可以理解。此外,在上述仿真中,Irr的斜率(di/dt)均设置为相同条件,但当di/dt陡峭时,dV/dt也会变陡峭。 综上所述,可以说,在桥式电路中使用MOSFET时,反向恢复特性越差的MOSFET,发生MOSFET的dV/dt失效风险越大。 本文介绍了MOSFET的SOA失效、MOSFET的雪崩失效和MOSFET的dV/dt失效。要想安全使用MOSFET,首先不能超过MOSFET规格书中的绝对最大额定值,另外,了解这些MOSFET的失效机理之后再进行电路设计和工作条件设置是非常重要的。 下面是关键要点汇总。 什么是SOA(Safety Operation Area)失效 本文的关键要点 ・SOA是“Safety Operation Area”的缩写,意为“安全工作区”。 ・需要在SOA范围内使用MOSFET等产品。 ・有五个SOA的制约要素,不满足其中任何一个要素的要求都有可能会造成损坏。 什么是雪崩失效 本文的关键要点 ・当向MOSFET施加高于绝对最大额定值BVDSS的电压时,会造成击穿并引发雪崩击穿。 ・发生雪崩击穿时,会流过大电流,存在MOSFET失效的危险。 ・雪崩失效包括短路造成的失效和热量造成的失效。 什么是dV/dt失效 本文的关键要点 ・dV/dt失效是MOSFET关断时流经寄生电容Cds的充电电流流过基极电阻RB,使寄生双极晶体管导通而引起短路从而造成失效的现象。 ・dV/dt是单位时间内的电压变化量,VDS的上升坡度越陡,越容易发生dV/dt失效问题。 ・一般来说,反向恢复特性越差,dV/dt的坡度越陡,越容易失效。 来源:techclass.rohm
  • 2022-7-22 20:40
    180 次阅读|
    0 个评论
    分立式CoolSiC MOSFET的寄生导通行为研究 米勒电容引起的寄生导通常被认为是碳化硅MOSFET的弱点。为了避免这种效应,硬开关逆变器通常采用负栅极电压关断。但是,这对于CoolSiC™MOSFET真的是必要的吗? 【导读】米勒电容引起的寄生导通常被认为是碳化硅 MOSFET 的弱点。为了避免这种效应,硬开关逆变器通常采用负栅极电压关断。但是,这对于CoolSiC™MOSFET真的是必要的吗? 引言 选择适当的栅极电压是设计所有栅极驱动电路的关键。凭借 英飞凌 的CoolSiC™MOSFET技术,设计人员能够选择介于18V和15V之间的栅极开通电压,从而使器件具有极佳的载流能力或者可靠的短路耐用性。另一方面,栅极关断电压仅需确保器件保持安全关断即可。英飞凌鼓励设计人员在0V下关断分立式MOSFET,从而简化栅极驱动电路。 为此,本文介绍了一种易于重现的方法来表征碳化硅MOSFET的寄生导通敏感性,并介绍了使用分立式CoolSiC™MOSFET所获得的测试结果。 寄生导通效应 对栅极的电感反馈和电容反馈可能导致半导体开关产生不必要的导通。如果使用了碳化硅MOSFET,则通常考虑是米勒电容产生的电容反馈。图1便解释了这种效应。低边开关S 2 的体二极管导通负载电流I L ,直至高边开关S 1 导通。在负载电流换向到S 1 之后,S 2 的漏源电压开始上升。在这个阶段,不断上升的漏极电位通过米勒电容C GD 上拉S 2 的栅极电压。然后,栅极关断 电阻 试图抵消并拉低电压。但如果电阻值不够低,则栅极电压可能超过阈值水平,从而导致直通、增加开关损耗。 直通事件的风险和严重程度取决于特定的操作条件和测量硬件。高母线电压、高dV DS /dt和高结温是最关键的工作点。这些条件不仅会更严重地上拉栅极电压,还会降低阈值电压。硬件方面的主要影响因素是:与C GD 并联的电路板寄生电容,与C GS 并联的外部电容,栅极关断电压以及栅极关断电阻。 图1:体二极管关断期间米勒电容C GD 的影响 表征测试实验设置和方法 设计人员经常会研究半导体器件的栅极电荷曲线,来了解其对寄生导通的敏感性。虽然这种方法相当简单——只需大致查看数据表即可——但却无法得出应用结论。其一大缺点在于栅极电荷在本质上是静态的,而寄生导通显然是动态效应。因此,我们在应用条件下,执行专门的表征测试,来评估1200V/45mΩ CoolSiC™MOSFET在TO-247 3引脚和4引脚两种封装中的寄生导通行为。所有测试均在0V关断电压下进行。 图2:硬件设置:高边开关S 1 用作“dv/dt发生器”,低边开关S 2 作为测试器件。测试旨在找到能够避免寄生导通的S 2 最大栅极关断电阻。 半桥 评估板 的配置如图2。它主要是一个换向单元,其中低边开关是测试器件,高边开关用作dv/dt发生器。当高边器件导通时,低边器件上的漏极-源极电压上升,导致栅极电压增加。当然,dvDS/dt越低,栅极关断电阻越低,出现寄生导通的可能性越小。本实验旨在确定临界栅极关断电阻值。这种所谓的临界栅极电阻就是与0Ω获得的参考波形相比导致Q* rr 增加10%的值。10%的阈值足以使我们获得可靠的测量数据,但同时它也足够小,在大多数应用中可忽略不计,参见图3:在100°C下且R Goff 值不同时1200V/45mΩ CoolSiC™MOSFET的波形示例。与参考波形(黑:0Ω)相比,其他波形的Q* rr 增加了10%(橙:12Ω)和40%(红:22Ω)。Q* rr 表示三个电荷的总和:(1)体二极管的反向恢复电荷;(2)半导体、布局和无源元件的电容电荷;(3)寄生导通的影响。 测试在不同温度、不同负载电流和不同电压斜率下进行。后者通过高边开关S 1 的R Gon 进行调节。 图3:在100°C下且R Goff 值不同时1200V/45mΩ CoolSiC™MOSFET的波形示例。与参考波形(黑:0Ω)相比,其他波形的Q* rr 增加了10%(橙:12Ω)和40%(红:22Ω)。Q* rr 表示三个电荷的总和:(1)体二极管的反向恢复电荷;(2)半导体、布局和无源元件的电容电荷;(3)寄生导通的影响。 表征测试结果 在零负载电流下进行测试意味着测试器件的体二极管在开关瞬态之前没有正向偏置。未出现二极管恢复;瞬态仅仅是电容的充电和放电。在这种情况下,寄生电感中感应的电压作用不大。因此,TO-247和TO-247-4引脚封装的性能是相同的。 图4显示了800V和0A下的测量结果。非常明显,为避免出现寄生导通,在更高dvDS/dt和更高温度下,需要更低的R Goff 。值得一提的是,即使在50V/ns和175°C的条件下,0V的栅极关断电压也足以防止寄生导通。如果无法选择极低的R Goff ,则可以使用具有有源米勒钳位功能的 驱动器 (如1E DC 30I12MH)。 图4:在测1200V/45mΩ CoolSiC™MOSFET的临界栅极电阻值与dvDS/dt的函数关系。测量点是使用0V的栅极关断电压在800V和0A条件下获得的。虚线表示计算的 趋势 线 在较高的负载电流水平下,出现了从S 2 的体二极管到S 1 的MOS沟道的硬换向。由于存在二极管反向恢复和感应电压,情况较为复杂。简单来说,有三种效应发挥作用: 1)体二极管恢复减慢了平均dvDS/dt,缓解了寄生导通。 2)换向回路电感和器件输出电容之间的振荡会局部增加dvDS/dt,使情况更加严峻。 3)假设采用标准TO-247封装,源极端子S 2 的负反馈导致栅极电压降低,增加了抗寄生导通的强度。 显然,上述效果的权重取决于实际的硬件设置。在使用应用于本文所述所有测试的评估板时,175°C和0A是最关键的条件。因此,图4突出显示的无寄生导通的区域也适用于40A测量——无论是TO-247还是TO-247-4引脚。 对高速开关应用的影响 如图3所示,由电容导通引起的直通电流和体二极管的反向恢复电流令人难以区分。不论是在二极管还是在开关上,这两种效应都会减缓电压瞬变,或使之变得平滑,增加开关损耗。对于需要最高开关速度的应用,寄生导通会对性能(类似于使用不当的续流二极管)产生影响。 图5显示了在栅极上以18/0V工作的各种碳化硅MOSFET技术可实现的最小导通开关损耗。并非所有器件都能够在这样的驱动条件下保持高速开关特性,但结果证实CoolSiC™MOSFET对寄生导通具有高抗扰度。 图5:在800V,15A和150°C时,不同1200V碳化硅MOSFET技术可以实现的最小导通开关损耗。测试器件的标称导通电阻为60-80mΩ,在栅极上以18/0V运行。 找元器件现货上 唯样商城 结论 本文介绍了一种简单的方法,来表征功率半导体开关对米勒电容产生的寄生导通的敏感性。我们使用了在800V母线电压和50V/ns开关速度下运行的分立式CoolSiC™MOSFET进行测试,测试结果表明,即使在高速两电平 转换器 中,0V的栅极关断电压也是可行的。在研究开关电压仅为母线电压一半的三电平电路时,情况得到彻底缓解。在这种情况下,无论栅极电阻值是多少,CoolSiC™MOSFET几乎都没有容性寄生导通。 假设有一个精心设计、栅极-漏极电容极低的PCB布局,这时英飞凌鼓励电力电子工程师使用0V的栅极关断电压来驱动分立式CoolSiC™MOSFET,这可以在不影响性能的同时,简化栅极驱动设计。 参考文献 K. Sobe et al, “Characterization of the parasitic turn-on behavior of discrete CoolSiC™ MOSFETs”, PCIM Europe 2019, Nuremberg, Germany, May 2018 T. Basler et al, “Practical Aspects and Body Diode Robustness of a 1200 V SiC Trench MOSFET”, PCIM Europe 2018, Nuremberg, Germany, June 2018 Infineon AN-2006-01: “Driving IGBT s with unipolar gate voltage”, Application Note, December 2005 S. Jahdi et al, “Investigation of parasitic turn-ON in silicon IGBT and Silicon Carbide MOSFET devices: A technology evaluation”, ECCE-Europe 2015, Geneva, Switzerland, September 2015 Infineon AN-2017-44: “1200V Highspeed3 IGBT in TO-247PLUS Evaluation Board”, Application Note (rev 1), November 2017 来源:英飞凌工业半导体 ,作者:Klaus Sobe
  • 热度 2
    2022-3-15 09:31
    983 次阅读|
    0 个评论
    DC-DC升压稳压器外围元器件的选择与优化
    在便携和可穿戴设备等电池供电的低电压应用中,常有一些功能需要较高的电压才能工作,例如射频收发器、精密模拟电路、白光LED背光驱动、雪崩光电二极管(APD)的偏置电路等。这就需要采用DC-DC升压转换器来向上转换到所需的电压,让设备既节能又高效的工作。 升压稳压器特点 为满足低压应用中的某些特定的较高电压需求,升压DC-DC稳压器将低输入电压转换为高输出电压,典型电路组成包括:电感器、功率MOSFET、整流二极管、控制IC、输入和输出电容器。 图 1: 基本升压稳压器配置 常见的改进型配置一般使用两个MOSFET,第二个MOSFET替换整流二极管,在电源开关关闭时打开。MOSFET具有较低的电压降,这大幅减少了功耗,同时提高了稳压器的效率。 此外,有些稳压器还带有保护功能,针对超温、输出短路、开路负载条件和输入过流等情况提供保护。 外围元器件选择 转换效率是衡量DC-DC升压电路的重要指标,而造成功耗损失的主要是电感的寄生串联电阻(ESR)、肖特基二极管的正向导通压降、功率管的导通电阻以及开关损耗这四个方面。当然,芯片本身也有静态功耗,这在低负载情况下会影响转换效率,因此要求芯片内部的功率管导通电阻也需非常小。同时,芯片内部要设计合适的驱动电路,保证功率管开关沿很陡,以减小开关时的功耗。 电感和肖特基二极管选择的不同会影响转换效率,电容和电感选择的不同会影响输出的纹波。选择合适的电感、电容、肖特基二极管,可以获得高转换效率、低纹波、低噪声。 1、电感选择 电感器是升压转换器的一个关键元件:能在电源开关接通期间存储能量,并在关断期间将存储的能量通过输出整流二极管传输至输出。 设计人员必须在低电感器电流纹波与高效率之间达到平衡。对于给定的物理尺寸,电感较低的电感器会拥有较高的饱和电流和较低的串联电阻,但较低电感会导致更高的峰值电流,进而使能效降低,纹波增大和噪声提高。 电感器的电感值与最小电感值Lmin、电流纹波等有关。计算具体电感值时,须留意占空比(D)参数,具体大小为:D = (Vout-Vin)/Vout。 第一,要保证使DC-DC升压能够在连续电流模式下正常工作所需要的最小电感值Lmin。 该公式是在连续电流模式下,忽略其他诸如寄生电阻、二极管的导通压降的情况下导出的,实际的值还要大一些。如果电感取值小于Lmin,电感可能会发生磁性饱和,造成DC-DC电路的效率大大下降,甚至不能正常输出稳定电压。 第二,考虑到通过电感的电流纹波问题,同样在连续电流模式下忽略寄生参数, 当L过小时,会造成电感上的电流纹波过大,造成通过电感、肖特基二极管和芯片中的功率管的最大电流过大。由于功率管并不是理想的,所以在特别大的电流时功率管上的功率损耗会加大,导致整个DC-DC电路的转换效率降低。 第三,一般来说,不考虑效率问题时,小电感可以带动的负载能力强于大电感。但是由于在相同负载条件下,大电感的电流纹波和最大电流值小,所以大电感可以使得电路在更低的输入电压下启动(以上均是在相同的寄生电阻条件下推导出的结论)。 为了减小外接电感尺寸,可提高工作频率。例如350KHz工作频率,只需要3.3uH以上的电感就可以保证正常工作,但是如果输出端需要输出大电流(例如:输出电流大于50mA),为了提高工作效率,建议使用较大电感。 在大负载情况下,电感的串联电阻会极大地影响转换效率,假设电感的电阻为rL,负载电阻为Rload,那么在电感的功率损耗大致如下式计算: 综合考虑,建议使用27uH、<0.5Ω的电感。如果需要提高大负载效率,需要使用更大电感值、更小寄生电阻值的电感。 2、输出电容选择 输出电容器可减少负载纹波,帮助在负载瞬态期间提供稳定的输出电压。当考虑电容的ESR时,输出电压的纹波为: 为了减小输出的纹波,需要比较大的输出电容值。但是输出电容过大,就会使得系统的反应时间过慢,所以建议使用100uF电容。如果需要更小的纹波,则需要更大的电容。 当输出连接大负载的时候,ESR造成的纹波将成为最主要的因素,同时ESR又会增加效率损耗,降低转换效率。所以建议使用ESR低的钽电容,或者多个或X7R陶瓷电容器并联使用。其他类型的电容器可能具有较高的ESR,会降低转换器效率。 3、二极管 用于整流二极管对DC-DC效率影响很大,虽然普通的二极管也能够使得DC-DC电路工作正常,但是会降低5~10%的效率,所以建议使用正向导通电压低、反应时间短的肖特基二极管,例如1N5817、1N5819、1N5821、1N5822等。 具体参数上,二极管的平均正向额定电流必须等于或高于最大输出电流,重复峰值正向额定电流必须等于或高于电感器峰值电流,反向击穿电压必须高于内部电源开关额定电压。 例如,MCP1665带有36V的内部开关,能够提供高达1A的电流。因此,Microchip建议使用STMicroelectronics供应的STPS2L40VU肖特基二极管,该器件的反向击穿电压为40V,正向电流为2A。 4、输入电容 如果输入电源稳定,即使没有输入滤波电容,DC-DC电路也可以输出低纹波、低噪声的电流电压。但是当电源离DC-DC电路较远,建议在DC-DC的输入端加上10uF以上的滤波电容,用于减小输出的噪声。 DC-DC升压稳压器具有高速开关特征,对PCB布局非常敏感:寄生电感和电容可能导致高输出纹波、输出稳压效果不佳、电磁干扰 (EMI) 过大,甚至因高电压尖峰而导致故障。因此,外围元件应靠近IC芯片,接地节点应靠近IC电源接地引脚,以最大程度减小回路面积,电源接地、信号接地和导热垫也应该在单个低阻抗接地点连接在一起。
  • 热度 13
    2021-4-9 10:55
    1526 次阅读|
    0 个评论
    从本文开始将介绍在具体应用中效率等的改善案例。 LED照明电路(临界模式PFC+DC/DC):利用MOSFET提升效率并降低噪声的案例 下面的电路摘自实际LED照明电路的相关部分。该LED驱动电路是DC/DC转换器通过临界模式(BCM)的PFC向LED供电的。 下面将介绍在该电路中改变PFC部的开关MOSFET、DC/DC转换器部的开关MOSFET、以及其栅极电阻RG,并对效率和噪声进行比较的情况。 原设计使用的超级结MOSFET(以下简称“SJ MOSFET”)标记为“Original”。考虑到噪声问题,Original的RG采用100Ω。对此,将PFC及DC/DC转换器的开关替换为三种SJ MOSFET,RG也尝试了100Ω和50Ω两种方案。MOSFET采用高速开关型R5207AND,以及新一代产品R6004END和R6004END,噪声均得以降低。 下表中黄色高亮表示效率高于Original,绿色高亮表示最高效率。获得的结论是PFC采用R5207AND、DC/DC转换器采用R6004END的组合效率最佳,RG为50Ω时的效率更高(3种SJ MOSFET的组合共有9组结果,效果不好的已被省略)。与Original相比,效率提高了1%左右。效率是电路整体的效率。 另外,请看下面DC/DC转换器部的噪声特性。数据是Original与效率最好的R6004END/50Ω的比较数据。 Original的开关速度比较快,因此采用100Ω的RG作为噪声对策比较妥当,不过低噪声的R6004END在RG为50Ω时即使提高开关速度后噪声也比Original低,可在提高效率的同时降低噪声。 下面比较一下PFC部和DC/DC转换器部的波形,以确认其原因。PFC部的波形如下。 在PFC部,R5207AND的效率最高,由于在该范围无法判别,所以进行了放大。 相对于Original,转换为导通的时间R6004END和R5207AND略慢。然后是转换为关断的情况。 从图中可以看出,R6004END和R5207AND转换为关断的时间更快,更急剧。可以认为这点可降低开关损耗,有助于提高效率。接下来是DC/DC转换器部的开关波形。 对Original与效率较高的R6004END和R5207AND进行了比较。R6004END还给出了RG为50Ω时的波形。同样,对导通、关断波形进行放大。 R6004END转换为导通的时间最快,RG=50Ω时更快。 转换为关断的时间在RG=100Ω时R6004END最慢,但在RG=50Ω时则变为最快。通过这些比较,可以认为R6004END+RG=50Ω的转换最快,因此有助于减少开关损耗并提高效率。 当PFC采用R5207AND、DC/DC转换器采用R6004END时,开关损耗略有减少,两种因素叠加可使效率提高1%左右。另外,在开关损耗降低的同时,噪声也得以改善。综上所述,通过重新探讨开关MOSFET的特性和栅极电阻,可同时改善效率和噪声,因此,与上一篇、上上篇中提到的二极管相同,MOSFET的特性也需要充分进行探讨和确认。 关键要点: ・PFC部及DC/DC转换器部的开关MOSFET的特性不同,效率也会改变,因此需要充分探讨MOSFET的特性。 来源:techclass.rohm
相关资源