tag 标签: 逆变

相关博文
  • 热度 6
    2014-7-6 07:42
    637 次阅读|
    0 个评论
       前言   正弦波逆变电源被广泛的应用于电力、邮电、通信、航天等各个领域, 而且随着微电脑技术的不断发展和普及,正弦波逆变电源的应用越来越广。为了满足用户对电能质量的要求,逆变电源在直流输入电压波动的情况下应保持输出电压恒定。传统的电压单环控制一般存在输出电压波动大、动态响应慢等缺点,很难实现精确控制。在逆变电路中为了克服以上不足,采用电压前馈控制技术来解决此问题。本文在单相SPWM逆变的基础上,采用前馈调整三角载波和反馈调整正弦波相结合的电压- 电压复合控制方案,较好地解决了输出电压瞬态偏离问题,且实现简单。   电压- 电压复合控制基本思想   在DC/AC逆变电路中, 输出电压与输入电压存在一定的线性关系。当输入电压变化时,输出电压随之相应改变。为了使输出电压保持稳定,一般要采集电压输出量进行反馈闭环控制。但是由于逆变电源开关频率较高, 且电路存在电感、电容等延时元件,使得反馈电压的变化滞后于输入电压的变化, 系统的反应与调节比较迟缓, 容易造成较大的瞬态偏离。如果能在输出电压变化之前,利用输入电压的变化对电路的控制信号进行调节,即在采用电压反馈技术的基础上辅以电压前馈技术则能较好地解决这个问题。这种电压- 电压复合控制,可以实现动态响应快、调节迅速、输出电压波动小的目的。   前馈型DC/ AC控制电路的设计与实现   DC/AC逆变器的控制电路可由分立元件或集成元件构成。   由分立元件构成的控制电路   由分立元件构成的控制电路多采用调制法,即把正弦波信号作为调制波, 用三角波作为载波, 当三角波与正弦波相交时对电路中的开关器件进行控制。采用调制法进行控制时三角载波的频率是远大于正弦调制波的频率的。所以在三角波的一个开关周期中可以近似地认为正弦波Vc 为常量,这样就与DC/ DC 变频器的控制规律是相同的了,如图1 所示。占空比D =Vc/ Vr(Vc Vt) ,改变Vc、Vr任意一个的幅值即可改变输出电压的大小。当三角波由Vr 变为Vr′时, 占空比的大小由T1/T变为T2/T。   在SPWM中, 一般将正弦波峰值Vc与三角波峰值Vr的比值称为调制度a , 即a =Vc/Vr。这样DC/AC变换电路输入输出之间有如下的数量关系: 输出电压的基波有效值Uo正比于调制度a及输入电压UI, 即UOl = KaUI = KUIVc/Vr , ( K为常数,与主电路结构有关) 。于是, 当UI变为原来的n倍的时侯, 要保持输出电压稳定, 三角波峰值电压也要相应地变为原来的n 倍。   据上述原理构成的DC/AC逆变电路如图2所示。输入电压UI分压后经斩波电路斩波,得到电压幅值随输入电压变化的方波电压Us,Us经有源积分电路积分后得到三角波电压Ur。积分前后的电压波形如图3所示。此三角波电压的峰值是正比于方波幅值电压的,于是三角波峰值电压随输入电压成比例地变化,保持了输出电压的稳定。此电路控制过程独立, 互不干扰, 使得电路的设计和实际调试变得简便。控制部分设计方法简单易行,达到了快速稳定输出的目的。     控制电路由集成元件构成   随着微处理器性价比的不断提高, 逆变电源已进入了智能化阶段, 可用集成元件来方便地组成控制电路。目前由集成元件实现的控制电路主要有专用集成芯片法和微机生成法。专用的生成SPWM的芯片如SA838、SA868、HEF4752、SLE480等。该方法的优点是电路集成度高、可靠性高;微机生成法控制电路由单片机采用软件方式产生,目前市场上有许多性价比高的单片机, 如PIC系列或引脚少的MC51系列单片机, 可用指令产生SPWM, 并可方便地实现对逆变系统的控制、监视、管理和保护。   在单相DC/AC变换电路中, 为了简化控制电路结构, 还可以采用电压型PWM集成控制芯片如SG1525、TL494 等构成SPWM控制器, 利用控制芯片内部产生的三角波与由外部输入的正弦调制波进行比较得到SPWM波形。这时三角波的幅值是不能够进行调节的,因此利用输入电压的变化来调节三角波幅值的前馈控制思想无法实现。在这种情况下,可将前馈电压的采样值按照电路的输入输出关系UO1 = KUIVc/ Vr进行归一化换算后, 与反馈电压、给定电压进行综合比较,经PI调节后连接到变增益放大电路去调节正弦波的幅值,从而实现电压前馈和电压反馈控制。利用集成元件实现电压-电压控制的电路原理如图4 所示。   仿真与实验结果   按照上述控制方法对图2所示电路进行仿真与试验, 逆变主回路为IGBT全桥电路, 试验参数为:输入直流电压UI =200 V,交流输出电压有效值为100V, 设计功率为5kW, 开关频率为50kHz , L="10"μH,C =1μF。当输入电压由100V跃变为150V时, 如图5(a) 所示, 传统电压反馈控制与前馈型电压- 电压控制输出电压的仿真结果分别如图5(b) 和图5(c)所示,三角波变化如图5(d) 所示。 点击看原图   仿真结果表明,前馈型电压- 电压控制对输入电压波动的反应灵敏, 能够及时的调整载波的幅值,达到瞬间稳定输出电压的目的。   结论   本文提出了一种采用前馈调整三角载波和反馈调整正弦波相结合的电压- 电压复合控制方案,并全面地说明了控制电路由集成元件构成时的应用方法。试验结果表明此控制方法较好地解决了输出电压瞬态偏离问题,且实现简单。
  • 热度 8
    2012-3-4 17:00
    940 次阅读|
    0 个评论
      引言:太阳能作为一种新能源,能为我们的生活提供清洁无污染的能源。由于光伏发电系统产生的电流为直流电,但民用电力以交流供电为主,且太阳能发电最终将走向并网运行,这就意味着太阳能发电必须通过逆变器将直流电转换为交流电来驱动家用电器等负载。因此,逆变器在太阳能发电系统中具有举足轻重的作用。   逆变器的主要功能是将电源的可变直流电压输入转变为无干扰的交流正弦波输出,既可供设备使用,也可反馈给电网。   一、太阳能发电对光伏逆变器的要求   对于熟悉功率管理的工程师而言,设计太阳能发电系统的逆变器有什么要点需要额外注意?首先,就现有光伏系统逆变器的使用情况来看,它们一般只能使用5到10年,而光伏电池板的使用寿命长达25年,逆变器成为光伏系统中可靠性最低的组件。 IR的AlbertoGuerra提出,设计师必须考虑光伏系统逆变器的使用寿命。太阳能逆变技术业界对于产品寿命有很高的期望,一般都能保证20至25年的使用期,因此特别着重每种元件的可靠性。   二、提高光伏逆变器寿命的关键   决定光伏逆变器的寿命为其各元件的可靠性,尽管半导体元件通常都达到这种可靠性水平,但对于无源元件来说却有可能是一个挑战,特别是电解电容器。电解电容器的可靠性提高成为了提高光伏逆变器可靠性的关键之一。   三、电解电容器在光伏逆变器中的作用   光伏逆变器可看成是用直流电源供电的特殊用途的变频器,输出频率为50Hz或与电网同步的50Hz。也就没有整流器产生的整流电路的电流脉冲,这样直流母线上的电容器的功能为直流母线电容器或者成为“DC-Link”电容器,其作用为吸收由逆变器产生的开关频率极高次谐波电流和输出频率的三倍频电流和高次谐波电流。   四、光伏逆变器对电解电容器的要求   1.高电压   一般大功率的光伏逆变器,将转化后的交流电直接并入高压电网中,但从安规角度考虑,光伏电池组的输出电压一般不高于900V,可以选择两只450V电解电容器串联,但为了提高安全性,可以选择2只500V电解电容器串联。所以需要高电压等级的电容器来减少电容器的串接而提高可靠性。   2.高耐纹波能力   一般光伏逆变器流过电容器的电流为逆变器输出电流有效值的0.44倍。如光伏逆变器的输出电压为线电压250V,每输出1kW功率对应的输出电流约2.54A,流过直流母线电容器的电流为1.12A。100kW光伏逆变器的直流母线电容器需要流过112A有效值电流,所选择的电容器的额定电流不应低于这个数值。如果一只电解电容器的额定电流不能满足要求,要选择多只电解电容器并联方式获得所需要的电流值。所以要求单只高耐纹波能力的电解电容器来减少电解电容器的并联数量,提高整体可靠性。   3.长寿命   在太阳能发电系统中光伏电池板的使用寿命长达25年,而逆变器成为光伏系统一般只能使用5到10年,所以太阳能发电系统对光伏逆变系统的寿命要求为25年的水平。对于无源元件电解电容器,它的负极为电解液,会随着使用时间的增长慢慢干涸而失效。这势必需要电解电容器行业制造出更长寿命的电解电容器来符合光伏逆变器的要求。   五、BIT的电解电容器   上海一点点电子科技有限公司是一家专注于螺栓型铝电解电容器制造10多年的公司。经过3年多的研发,对电解液的配方进行改良,电解液中的重要化学药品采用日本进口药品,成功研发出高性能的电解液。经过可靠性试验完全符合新能源领域要求的长寿命,高纹波,高电压。终于2011年初推出了新能源领域应专用系列ES6和EL20。   目前市场上的长寿命型的铝电解电容器为85℃、5000小时,而BIT的ES6系列在相同条件下能保证85℃、6000小时寿命,且耐纹波能力为普通长寿命型的1.7倍,提高了电解电容器的寿命和耐纹波能力,符合了普通光伏逆变器对电容器的要求。BIT的EL20超长寿命型电解电容器更是达到了85℃、20000小时寿命,耐纹波能力是普通长寿命型的1.9倍,完全能够满足光伏逆变器的长寿命的需要,能大幅度提高光伏逆变器的可靠性水平,符合太阳能发电系统的要求。随着新能源领域不及其相关行业的不断进步,相信太阳能发电技术也会高速发展,太阳能发电系统的可靠性会不断提高。我们BIT人愿意与大家一起努力为新能源的发展提供更高规格的电解电容器,为建设绿色地球贡献绵薄之力。
  • 热度 7
    2011-11-30 11:43
    1904 次阅读|
    1 个评论
      1 概述 DC-AC,实现直流信号转换成频率可调的正弦信号,以5VDC转正负峰峰值2.5V,频率最高2.5KHz正弦波信号为例。频率0Hz-2.5KHz连续可调。   2 MATLAB正弦数据生成 x=0:1:31; y=280*sin(2*pi*x/16)+315; plot(x,y,'r.','MarkerSize',5) grid on 3 电路拓扑 电路拓扑,SPWM - 全桥驱动 - LC滤波。       如上图所示,被调信号与解调信号。 4 SPWM算法 载波频率为80KHz,即开关信号的频率为80KHz。占空比35-600。采用定时器,定时寻址写入周期占空比方式实现调制。 5 试验波形 SPWM调试信号 逆变输出信号,解调 6 结论 实现频率0-2.5HK连续可调的正弦逆变信号,若需要大功率输出,全桥电路选用大功率的MOS管,或者IGBT,即可实现大功率逆变器。典型应用如光伏逆变器。
相关资源
广告