tag 标签: 仪表放大器

相关博文
  • 热度 10
    2023-10-23 11:08
    2596 次阅读|
    0 个评论
    仪表放大器可以实现输入差分信号放大,抑制共模偏置。生成单端信号。常规的,可以使用三个运放实现信号缓冲和差分放大。也可以使用两个运放实现仪表放大器功能。 如图,差分信号均由运放的正端输入,两个运放处于同相放大状态。输入阻抗就是运放正端输入阻抗,很高。可以用于高输出阻抗的信号源。 由“虚短”的概念可知, V3 = Vn V2 = Vp ,在 2 3 点可以列出 KCL 方程 (1) 3 点的 KCL 方程 (2) 2 点的 KCL 方程 电阻取值 R1 = R2 = R3 = R5 (1) + (2) 式可得 (3) 可以解得: (4) 可见Vp-Vn 即为输入的差分信号,被放大 2* ( 1+R1/ R4 )倍。如果Vp-Vn为 负,则需要使用Vr 将输出结果偏置到正输出。 实际电路中对输入共模电压范围是有限制的, Vo1 的输出范围只能在电压轨范围,可以令 Vp = Vn ,由( 1 )可得 如果 Vr 为 0 , Vn 不能大于供电电压的一半,否则 Vo1 会饱和,失去放大作用。 在实际使用时,运放最好选用高精度的运放,输入偏置电压 Vos 小,且温度特性较好。输出轨对轨。如 858x 855x 这样, Vos 为 uV 级别的。 这个电路适用于电阻桥电路,如称重传感器,压力传感器。输出的信号一般是差分信号,输出共模电压为激励电压的一半。差模信号变化数 mV~ 数十 mV 。 以下是信号峰值为 12mV ,偏移量 2V 的正弦信号,经过仪表放大器后的输出。信号被放大 42 倍,并被偏移 0.6V 。
  • 热度 5
    2022-4-7 16:07
    3257 次阅读|
    1 个评论
    仪表放大器单端输出转差分输出
    仪表放大器输出一般会连接到 ADC 进行转换,有的 ADC 需要接受差分信号。需要将仪表放大器输出的单端信号转换成差分信号。简单的方法是,利用仪表放大器的参考输入端, 外接高精度运放, 产生一对差分输出。 按仪表放大器的功能,可得 Vp = Vn + A Vi ① 其中 A 为仪表放大器的放大倍数, Vi 为差分输入。 依照运放虚短分析,可得 (Vp + Vn) / 2 = Vr ② 由 ①可以求解得到: Vp – Vn = A Vi ③ 正好是需要的 Vi 放大后的结果。 ②可以整理得到: Vp + Vn = 2*Vr ④ ③ + ④ 得 Vp = Vr + A Vi / 2 ④ - ③ 得 Vn = Vr – A Vi /2 相当于共模为 Vr 的一对差分信号。 从仿真结果可以看出,仪表放大器输出反相且有偏置的电压,差值消除了偏置并使幅度加倍。 用于分压的 R2 R3 需要精确匹配。运放需要使用低压差且带宽与应用要求匹配的。才能得到准确的结果。
  • 热度 21
    2014-6-10 10:37
    1717 次阅读|
    0 个评论
    随着仪表放大器的成本日益下降,在传统上采用运算放大器的应用中,使用仪表放大器可提升性能。 图1所示的运放加法器有以下几个缺点: 1.输入阻抗不高,由各信号的输入电阻决定。 当驱动信号的源阻抗很大或需要低阻抗驱动源设计时,这会引起增益误差。 2.电路无共模抑制能力,因此输入必须是单端。 3.最为明显的是,整个系统的性能受增益最大的通道限制。 一个通道的增益增加会导致所有通道的带宽降低、失真提高、系统噪声增加。 为了限制这些影响,即便是低性能加法器,也需要高性能、高带宽运算放大器。 该运放加法器的噪声增益为1+10k/(10||10k)。 噪声增益主要由增益最高的输入信号(10欧姆输入)决定,但所有输入的失调电压、增益误差、噪声和失真都会提高。 图1. 运放加法器 高性能、低成本仪表放大器提供了一种新颖的替代方案,可解决其中的许多问题。 仪表放大器的输出电压与In+和In–之间的压差成正比。 将一个电阻(Rgain)连接到Rg引脚便可放大该信号。 输出电压在基准引脚和输出引脚之间产生。 这样,基准引脚就可以用来级联加法器配置中的多个信号,如图2所示。 每个仪表放大器可以设置不同的增益。 《电子技术设计》网站版权所有,谢绝转载 与简单的运放加法器相比,该系统有以下几个优点: 1.每个输入都具有极高的输入阻抗。 2.每个信号都具有独立的共模抑制,由连接到该通道的仪表放大器决定。 通道增益越高,共模抑制能力也越强,误差越小。 3.利用仪表放大器的反相或同相端,可以轻松加减信号。 4.需要时,仪表放大器支持使用差分输入信号。 5.各信号的失真、噪声增益和带宽与其他信号无关。 这使得失调电压、增益误差、噪声和失真更低。 图2. 仪表放大器加法器 图3的“总谐波失真加噪声”曲线显示,虽然仪表放大器的带宽为1 MHz且功耗为1 mA,而运算放大器的带宽为8 MHz且功耗为4.5 mA,但仪表放大器加法器的失真性能却要比运放加法器高出5倍。 图3. 仪表放大器加法器和运放加法器的THD+N 《电子技术设计》网站版权所有,谢绝转载
  • 热度 21
    2014-4-8 13:22
    1189 次阅读|
    0 个评论
    目前所有市售的三运放仪表放大器(in-amp)仅提供了单端输出,而差分输出的仪表放大器可使许多应用从中受益。全差分仪表放大器具有其他单端输出放大器所没有的优势,它具有很强的共模噪声源抗干扰性,可减少二次谐波失真并提高信噪比,还可提供一种与现代差分输入ADC连接的简单方式。 图1显示了低功耗全差分仪表放大器电路的实现方式,该仪表放大器由OP2177精密低功耗双运算放大器(IC 1 )和AD8476全差分放大器/ADC驱动器(IC 2 )级联而成。该复合放大器消耗的电源电流不超过1.2mA,输入噪声为11nV/√Hz,最大输入偏置电流为2nA,最大输入参考失调电压为75mV,最大输入参考失调电压漂移为0.9mV/K。 图1:低功耗全差分仪表放大器 。 OP2177与增益设定电阻器R F1 、R F2 和R G 构成了仪表放大器的前置放大器,并将放大器的电压增益设置为: 若R F1 =R F2 ,则: AD8476充当仪表放大器的减法器,因此它接收来自前置放大器的放大信号,抑制其共模分量并传递其差模分量。AD8476的共模抑制比(CMRR)为90dB,即使在单位增益下也可使仪表放大器的CMRR达到90dB。增益变高时,若参考输入,共模输入信号所引起的误差在前置放大器电压增益的作用下进一步减小。 由于仪表放大器采用了三运放拓扑结构,分立电阻器R F1 、R F2 及R G 之间的匹配决定着放大器的增益精度(这是一个易于校准的参数),但不会限制放大器的CMRR。AD8476同时还实现了仪表放大器的差分输出驱动,使其能够直接驱动采样率高达500kSa/s的差分输入ADC。此外,可选网络R Z -C Z 构成了一个单极点低通滤波器,可被用作抗混叠滤波器。 驱动AD8476的V OCM 引脚即可设置仪表放大器的输出共模电压。若该引脚处于未连接状态,则放大器的输出共模电压设置在电源中点位置。当使用仪表放大器驱动ADC时,应为AD8476的V OCM 引脚提供ADC所需的共模电压。 《电子技术设计》网站版权所有,谢绝转载
  • 热度 21
    2013-7-12 15:58
    1052 次阅读|
    0 个评论
      仪表放大器是在有噪声的环境下放大小信号的器件。它利用的是差分小信号叠加在较大的共模信号之上的特性,能够去除共模信号,而又同时将差分信号放大。仪表放大器的关键参数是共模抑制比,这个性能可以用来衡量差分增益与共模衰减之比。   典型的被测信号可以是生物信号,如心电图(ECG)信号或者是来自诸如惠斯登电桥等传感器的微弱信号。由于这些信号源常常具有几千欧姆或更高的输出阻抗,因此仪表放大器需要具有很高的输入阻抗(典型数值在千兆欧姆级)。此外,由于仪表放大器往往要驱动输入阻抗很低的后级电路,如A/D转换器等,因此要求仪表放大器的输出阻抗很低。仪表放大器工作频率通常在直流到1 MHz之间,而在MHz级的速度下,输入电容比输入电阻更为重要,因此这类应用要考虑使用差分放大器。这种差分放大器输入阻抗较低,但速度要快很多。    常见仪表放大器   差动放大器   差动放大器不是仪表放大器,但是有时可以用在仪表放大器的场合。其电路只需一个运算放大器,如图1所示。在对高输入阻抗或者增益没有苛刻要求的场合,使用它是很方便的。   该电路的传递函数为:   Vout=R1/R2(VA-VB)   这一传递函数是在理想运算放大器和理想电阻器匹配条件下得出的。然而,当电阻不完全匹配时,同相放大电路和反相放大电路的传递函数不相等,就会有共模信号泄露出来。以0.1%的电阻匹配误差为例,最差情况下CMRR为54 dB,即10 V的共模信号会产生20 mV的输出误差。   差动放大器的优点是结构简单,最主要的缺点是输入阻抗很低。由于增益由R1/R2决定,因此需要在高增益和高输入阻抗间做出折中。此外,将信号分压变小后再进行放大(如同相通路),并不是获得良好噪声性能的方法。对于反相通路而言,加入了额外的电阻,并且反相放大电路的噪声增益总比信号增益高。提高输入阻抗就要求增加电阻的数值,这样将会产生更多的噪声。最后,共模抑制比也受到限制。为了改善这些缺点,第一步是对输入进行缓冲,这样就解决了输入阻抗的问题,如图2所示。   在对输入进行缓冲的同时,如果引入一些增益,除了可以得到高阻抗,还会产生很好的噪声性能,如图3所示。     电路中差动放大器的噪声仍然存在,但折算到输入端时噪声要除以第一级的增益。由于可以使用阻值非常小的电阻器,因此第一级的噪声可以做得非常低,而且不影响输入阻抗。这种结构的另外一个好处是在高增益时有较宽的带宽。原因是电压反馈放大器具有一定的增益带宽乘积,通过把增益分散到两级放大器,可使每一级的增益比较低,降低差动放大器级的增益,从而不会被增益带宽乘积所限制。然而还有一个没解决的问题就是共模抑制比。图3的电路将共模信号和差分信号都放大了,而所有的共模抑制都在差分放大级实现,因此,很容易超过第一级的输入电压范围。    三运放仪表放大器   将图3中第一级放大电路中的接地点去掉来解决共模抑制的问题,从而构成三运放结构仪表放大器,如图4所示。   第一级电路让共模信号有效地通过,没有任何放大或衰减,第二级差动放大器将共模信号去除。由于额外提升了差分增益,虽然电阻器的匹配状况并没有改善,但是系统的有效共模抑制能力却得到了增强。在实际应用中需要注意:   1)必须在第一级提供增益;   2)系统的共模抑制不是由前两个放大器的共模抑制比性能决定的,而是取决于两个共模抑制的匹配程度。然而双运算放大器从来不会给出这一指标,因此选择时必须要求CMRR性能指标比需要的目标性能指标至少好6 dB;   3)如果电阻器有某些对地的泄露通路,CMRR指标就会降低;   4)仪表放大器前面的元件要尽可能设计得平衡。如果仪表放大器同相通路中低通滤波器和反相通路中低通滤波器具有不同截止频率,系统的CMRR特性将会随着频率的升高而降低。   对于仪表放大器的第一级,每个运算放大器都要保持其两个电压输入端的电压相同。图4中R4两端的差分电压应当和两个输入端的电压相同,这个电压产生一个电流,流过电阻器R3并产生了放大器的增益。    三运放仪表放大器通常会遇到的问题有:   1)这一结构放大差分信号,然后去除共模信号。两级电路之间的中间节点载荷着大约一半的差分信号再加上共模信号。须确保这个信号处于运放的工作范围之内。当改变输入电压的共模成分时,如果看到类似于饱和的现象,则应首先检查这里。   2)流过R4的电流。当把仪表放大器的增益设置得很高时,R4就会很小,这意味着差分电压很大的时候,R4上产生的电流也会相当大。需要检查这种情况对系统是否有负面作用。   3)反馈通路中的电容。反馈通路的走线应尽可能地短,反馈通路过大的电容在高频时会使共模抑制比性能降低。    两运放仪表放大器   如果不需要三运放结构如此高的性能,可使用两运放结构进行简化。这种结构的主要优点是结构简单,它只需要两个运算放大器和四个电阻器,如图5所示。由于很少有包含三个运放的器件,因此三运放结构通常需要使用一个四运放器件。而多余的一个运放需要消耗更多的功率,所以两运放结构在能耗方面也会更低。此外,和三运放结构一样,两运放结构电路也具有很高的输入阻抗。但是两运放仪表放大器的性能要差一些,通过计算分析,这种结构的共模抑制比对电阻器阻值变化的灵敏度比差分放大器结构略高一些。最坏情况下,对于0.1%的电阻器匹配条件下的CMRR不是54 dB,而是50.5 dB。与三运放仪表放大器不同的是这个CMRR数值不随增益的增加而改善。由于两个通路不平衡,同相通路信号的频率响应与反相通路信号不同。由于反相通路要通过两级电路而不是一级电路,因此在反相通路中出现了一个相位延迟,并且压摆率和带宽特性也会不同,其噪声性能也会差一些。    两运放仪表放大器常见的问题是:   1)由于第一级的输出电压即放大了的输入电压,其中包括共模电压,因此需要注意第一级的输出电压;   2)由于两运放仪表放大器的CMRR对于电阻的匹配情况极为敏感,因此需要注意电阻器的匹配;   3)高频性能。因此,对于这三种结构来说:差动放大器 这种放大器很好,也很简单,只需要一个运算放大器和四个电阻器。然而,它的输入阻抗与所选电阻器的数值有关,而且噪声和CMRR的性能也较差。   4)三运放仪表放大器 第一级电路提供高输入阻抗。当我们在第一级电路中引入增益时,还提高了噪声和CMRR的性能。   两运放结构仪表放大器 这种电路结构比三运放结构简单得多,并且也具有很好的输入阻抗特性。然而,其噪声和CMRR性能不能随着增益的增加而改善。    实例分析:混合设计   如果已经找到了基本符合要求的仪表放大器,但某一指标无法满足需求,此时可以利用现有仪表放大器加上辅助电路达到目的。   噪声是仪表放大器的一个重要指标,现在很多运放都具有非常低的噪声系数,如果要求更低的噪声,则可以采用分立设计方法构建仪表放大器。然而这需要花费很大的精力来设计、布局和调试,而得到的共模抑制比又低于单芯片仪表放大器。图6所示的混合设计节省了设计时间和电路板空间,同时得到了与单芯片仪表放大器同样好的共模抑制性能。   这里所示的混合设计分为三级:运放组成的前置放大器,后面是仪表放大器。每一级的噪声都比前一级大,然而,由于为每一级都分配了增益,所以各级对系统最后的噪声没什么影响。如果用一个2.61 K的电阻将AD8221的增益设定为20,也可以将所有的增益都放在前置放大级,而使AD8221的增益为1。而AD8599的增益带宽积为10MHz。如果将总的增益都放在第一级,那么其带宽将会被限制在20 kHz。在两个元件之间分配增益,得到总带宽大约为300 kHz。
相关资源