tag 标签: capacitance

相关博文
  • 热度 18
    2014-5-14 19:20
    1929 次阅读|
    0 个评论
    One equation gets constantly bandied about when talking about power consumption of electronic devices. If you’re designing battery-operated ultra-low-power devices, it’s critical that you, well, ignore it. Power is proportional to junction capacitance times the voltage squared times the frequency, multiplied by the time the system is awake. I have seen engineers’ eyes light up by the V-squared term; they immediately start looking for a way to lower Vdd to get more battery life. As we’ll see in a future article, there is some benefit to dropping the power supply voltage. But this equation is irrelevant to ultra-low power systems because it measures power – watts – not current. High-performance systems live and die by power; have you seen the cooling towers on desktop CPUs? Battery-operated systems are constrained by battery capacity, which is measured in amp-hours; typically the units are milliamp hours (mAh). Power is not the issue for figuring battery lifetime. Think in terms of current. The following graph shows how one of Microchip’s nice low-power MCUs uses current as a function of clock frequency:   Note that doubling the clock rate from one to two MHz uses much less than twice the current. The reason is that the CPU is only one of the powered components. Memory and peripherals suck coulombs, too, and not all of these needs vary with clock frequency. There’s a static, constant draw, and one which is a function of frequency. It’s not hard to pick points off the graph at 3.5 volts and solve a couple of simultaneous equations, which gives: Constant current: 0.39 mA Dynamic current: 0.11 mA/MHz At one or two MHz most of the current is used by constant loads. At higher frequencies the constant draw is still significant. It’s clear that wise designers will run at the max possible clock rate to get back to sleep as quickly as possible. This is the advice given by all of the MCU vendors. And it’s wrong. Or at least naïve. Recently I showed how a battery’s internal resistance increases as it is depleted , and included the following graph, which shows the voltage delivered by the battery depending on load.     If one were to follow the advice to run as fast as possible, coming out of a sleep state means the system will be drawing perhaps a lot of current. Over time, the battery’s internal resistance will increase to a point where it may have a lot of capacity left, but cannot power a speedy current-hungry MCU. Wake up, and Vdd drops below the minimum allowed, so the processor crashes. At least one series of MCUs advertised for ultra-low power operation consumes 200 uA/MHz, maxing at 48 MHz. That’s about 10 mA just for the MCU. The battery might not be able to sustain a 10 mA load, but at 1 MHz - 200 uA - it can have plenty of life left. The moral is to wake up at a low clock frequency. Ramp it up while watching Vdd, stopping a bit above the MCU’s cutoff point. Be sure to factor in the needs of I/O you’ll be powering up. Alternatively one could apply some a priori knowledge (e.g., track consumed mAh in the code and use data such as in the graph above to estimate the operating point) to set the clock frequency. But if you take the vendors’ advice and wake up at full throttle, the useful battery lifetime may fall far short of your design goal.
  • 热度 16
    2014-5-14 19:17
    1576 次阅读|
    0 个评论
    One equation gets constantly bandied about when talking about power consumption of electronic devices. If you’re designing battery-operated ultra-low-power devices, it’s critical that you, well, ignore it. Power is proportional to junction capacitance times the voltage squared times the frequency, multiplied by the time the system is awake. I have seen engineers’ eyes light up by the V-squared term; they immediately start looking for a way to lower Vdd to get more battery life. As we’ll see in a future article, there is some benefit to dropping the power supply voltage. But this equation is irrelevant to ultra-low power systems because it measures power – watts – not current. High-performance systems live and die by power; have you seen the cooling towers on desktop CPUs? Battery-operated systems are constrained by battery capacity, which is measured in amp-hours; typically the units are milliamp hours (mAh). Power is not the issue for figuring battery lifetime. Think in terms of current. The following graph shows how one of Microchip’s nice low-power MCUs uses current as a function of clock frequency:   Note that doubling the clock rate from one to two MHz uses much less than twice the current. The reason is that the CPU is only one of the powered components. Memory and peripherals suck coulombs, too, and not all of these needs vary with clock frequency. There’s a static, constant draw, and one which is a function of frequency. It’s not hard to pick points off the graph at 3.5 volts and solve a couple of simultaneous equations, which gives: Constant current: 0.39 mA Dynamic current: 0.11 mA/MHz At one or two MHz most of the current is used by constant loads. At higher frequencies the constant draw is still significant. It’s clear that wise designers will run at the max possible clock rate to get back to sleep as quickly as possible. This is the advice given by all of the MCU vendors. And it’s wrong. Or at least naïve. Recently I showed how a battery’s internal resistance increases as it is depleted , and included the following graph, which shows the voltage delivered by the battery depending on load.     If one were to follow the advice to run as fast as possible, coming out of a sleep state means the system will be drawing perhaps a lot of current. Over time, the battery’s internal resistance will increase to a point where it may have a lot of capacity left, but cannot power a speedy current-hungry MCU. Wake up, and Vdd drops below the minimum allowed, so the processor crashes. At least one series of MCUs advertised for ultra-low power operation consumes 200 uA/MHz, maxing at 48 MHz. That’s about 10 mA just for the MCU. The battery might not be able to sustain a 10 mA load, but at 1 MHz - 200 uA - it can have plenty of life left. The moral is to wake up at a low clock frequency. Ramp it up while watching Vdd, stopping a bit above the MCU’s cutoff point. Be sure to factor in the needs of I/O you’ll be powering up. Alternatively one could apply some a priori knowledge (e.g., track consumed mAh in the code and use data such as in the graph above to estimate the operating point) to set the clock frequency. But if you take the vendors’ advice and wake up at full throttle, the useful battery lifetime may fall far short of your design goal.  
相关资源
  • 所需E币: 0
    时间: 2020-9-10 03:06
    大小: 44.46KB
    上传者: Goodluck2020
    BB208Lowvoltagevariablecapacitancediode
  • 所需E币: 0
    时间: 2020-9-10 03:07
    大小: 50.38KB
    上传者: Goodluck2020
    LAO(TONEREX)LARGECAPACITANCEALUMINUMELECTROLYTIC
  • 所需E币: 3
    时间: 2019-12-27 20:51
    大小: 92.92KB
    上传者: givh79_163.com
    寄生电容潜藏在电路的每个角落,当调整电路中容性负载过重时,仔细选择运算放大器成为关键,以实现电压转换率、电流输出能力、功耗、反馈环路稳定性的最优化。可考虑用现有的小封装功率增强型放大器驱动重容性负载,也可采用电流反馈放大器如LT1397实现超宽带电路。TinyAmpliersDriveHeavyCapacitiveLoadsatSpeedDesignNote429KeeganLearyandBrianHamiltonIntroductionWithapackagethathasathermalresistanceof135°C/W,Parasiticcapacitancelurksbehindeverycornerofanthismuchcontinuouspowerwouldresultina148°Criseelectroniccircuit.FETgates,cabling,groundandpowerindietemperature.Iftheambienttemperatureis85°C,planesalladdtotheFaradbottomline.Whenthecapaci-thisbringsthedietoapackage-melting233°C!tiveloadgetsheavyinhighspeedcircuits,carefulopampToisolateCLOADfromtheamplier,adesigncoulduseselectionisparamountforoptimizingslewrate,currentaseriesresistor,RS.Thistechniqueultimatelylimits……
  • 所需E币: 5
    时间: 2019-12-27 21:07
    大小: 598.91KB
    上传者: wsu_w_hotmail.com
    超低电容的ESD保护二极管用于超高速应用UltralowcapacitanceESDprotectiondiodesFlexibleESDprotectionforultrahigh-speedapplicationsWithapplicationsgettingsmaller,ICsgettingdenseranddataratesgettingfaster,today’selectroniccircuitsareincreasinglysensitivetoElectrostaticDischarge(ESD).Tohelpyouovercomethis,NXPSemiconductorsoffersaseriesofultralowcapacitanceESDprotectiondiodesthatmatchyourdesignrequirements.KeyfeaturesThePESD5V0U1BA/BB/BLandPESD5V0U2BTdiodesprovide4Ultralowdiodecapacitance:Cd=2.9pFbidirectionalESDprotectionupto10kV.Leakagecurrent4Ultralowleakagecurrent:IRM=5nA……
  • 所需E币: 4
    时间: 2019-12-28 19:23
    大小: 745.91KB
    上传者: 16245458_qq.com
    本文讲述了寄生电容在升压变压器设计中的影响。ApplicationNote39February1990ParasiticCapacitanceEffectsinStep-UpTransformerDesignBrianHuffmanOneofthemostcriticalcomponentsinastep-updesignFigure2showsthehighfrequencycurrentpathsofthelikeFigure1isthetransformer.Transformershavepara-parasiticcapacitors.Intheanalysisofoperationassumesiticcomponentsthatcancausethemtodeviatefromtheinputandoutputvolta……
  • 所需E币: 3
    时间: 2019-12-24 22:10
    大小: 96.89KB
    上传者: givh79_163.com
    Abstract:Touchscreensarenotanewconcept.Wherepreviouslytouchscreensweremerelydesignedtoreplacekeyboardsandmice,todaytheyconveyacompletelynewoperatingexperience.Featuringgreaterinteractionbetweentheuseranddevice,thisnew"touch"experiencehasbeenachievedbyacombinationofdifferenttechnologies.Thisarticleprovidesanoverviewofrecentadvancesintouch-screentechnologyMaxim>DesignSupport>AppNotes>A/DandD/AConversion/SamplingCircuits>APP5122Maxim>DesignSupport>AppNotes>Microcontrollers>APP5122Keywords:touchscreen,touchpanel,capacitivetouch,resistivetouch,haptics,mutualcapacitance,selfcapacitance,projectedcapacitive,hapticsactuatorSep07,2011APPLICATIONNOTE5122Touch-ScreenTechnologiesEnableGreaterInteractionBetweenUserandDeviceBy:RolandSandfuchsAbstract:Touchscreensarenotanewconcept.Wherepreviouslytouchscreensweremerelydesignedtoreplacekeyboardsandmice,todaytheyconveyacompletelynewoperatingexperience.Featuringgreaterinteractionbetweenthe……
  • 所需E币: 5
    时间: 2019-12-24 21:52
    大小: 419.17KB
    上传者: quw431979_163.com
    Abstract:Transimpedanceamplifiers(TIAs)arewidelyusedtotranslatethecurrentoutputofsensorslikephotodiode-to-voltagesignals,sincemanycircuitsandinstrumentscanonlyacceptvoltageinput.AnoperationalamplifierwithafeedbackresistorfromoutputtotheinvertinginputisthemoststraightforwardimplementationofsuchaTIA.However,eventhissimpleTIAcircuitrequirescarefultrade-offsamongnoisegain,offsetvoltage,bandwidth,andstability.ClearlystabilityinaTIAisessentialforgood,reliableperformance.Thisapplicationnoteexplainstheempiricalcalculationsforassessingstabilityandthenshowshowtofine-tunetheselectionofthefeedbackphase-compensationcapacitor.Maxim>DesignSupport>TechnicalDocuments>Tutorials>AmplifierandComparatorCircuits>APP5129Maxim>DesignSupport>TechnicalDocuments>Tutorials>Sensors>APP5129Keywords:TIA,transimpedanceamplifier,transimpedanceamp,photodiode,medicalinstrumentation,industrialcontrol,piezo-sensorinterface,TIAstability,feedbackcapacitance,phasecompensation,bodeplotFeb03,2012TUTORIAL5129StabilizeYourTransimpedanceAmplifierBy:AkshayBhat,SeniorStrategicApplicationsEngineerFeb03,2012Abstract:Transimpedanceamplifiers(TIAs)arewidelyusedtotranslatethecurrentoutputofsensorslikephotodiode-to-voltagesignals,sincema……
  • 所需E币: 4
    时间: 2019-12-24 20:24
    大小: 419.17KB
    上传者: givh79_163.com
    摘要:互阻放大器(TIA)被广泛用于转换电流输出的传感器,如光电二极管的电压信号,因为许多电路和仪器只能接受电压输入。与一个反馈电阻从输出到反相输入的运算放大器是最简单的实现这样一个TIA。然而,即使这样简单的TIA电路之间的噪声增益,失调电压,带宽和稳定性需要仔细权衡。显然,在TIA的稳定是必不可少的好,性能可靠。本应用笔记介绍了评估稳定的经验计算,然后显示如何微调反馈相位补偿电容的选择。Maxim>DesignSupport>TechnicalDocuments>Tutorials>AmplifierandComparatorCircuits>APP5129Maxim>DesignSupport>TechnicalDocuments>Tutorials>Sensors>APP5129Keywords:TIA,transimpedanceamplifier,transimpedanceamp,photodiode,medicalinstrumentation,industrialcontrol,piezo-sensorinterface,TIAstability,feedbackcapacitance,phasecompensation,bodeplotFeb03,2012TUTORIAL5129StabilizeYourTransimpedanceAmplifierBy:AkshayBhat,SeniorStrategicApplicationsEngineerFeb03,2012Abstract:Transimpedanceamplifiers(TIAs)arewidelyusedtotranslatethecurrentoutputofsensorslikephotodiode-to-voltagesignals,sincema……
  • 所需E币: 3
    时间: 2019-12-24 20:22
    大小: 146.04KB
    上传者: 16245458_qq.com
    摘要:低输入电容运算放大器的应用,如烟雾探测器,光电二极管放大器,医疗仪器,工业控制系统,压电式传感器接口。最大限度地降低输入电容也可以增加一杆在反馈路径的频率,直到它有一个电路的影响可以忽略。测量运算放大器的输入电容是不平凡的,尤其是如果该值是只有几个皮法。如此低的价值也提出在生产过程中测试的筛选运算放大器的困难。这一设计思想,介绍了如何准确地确定任何运算放大器的输入电容。Maxim>Designsupport>Appnotes>AmplifierandComparatorCircuits>APP5086Keywords:opamp,operationalamp,inputcapacitance,transimpedanceamp,photodiodetransimpedanceamp,medicalinstrumentation,industrialcontrol,piezo-sensorinterface,bodeplot,RCfilter,opampinputimpedance,opampstability,photodiodecapacitanceJul01,2011APPLICATIONNOTE5086MeasuretheInputCapacitanceofanOpAmpBy:AkshayBhat,SeniorStrategicApplicationsEngineerAbstract:Opampswithlowinputcapacitancearerequiredinapplicationssuchassmokedetectors,photodiodetransimpedanceamplifiers,medicalinstrumentation,industrialcontrolsystems,andth……
  • 所需E币: 3
    时间: 2019-12-24 19:07
    大小: 64.7KB
    上传者: givh79_163.com
    摘要:降压降压稳压器是非常流行的各种便携式和非便携式设备。这些降压转换器终止,在输出与输入电容CIN和输出电容,CO。CIN的高频滤波,这样的VIN具有低纹波。本应用笔记帮助系统设计师设置了一个特定的DC-DC降压稳压器设计Mathcad和计算CIN的。Maxim>AppNotes>BATTERYMANAGEMENTPOWER-SUPPLYCIRCUITSKeywords:Mathcad,Cin,inputcapacitance,stepdown,dc-dcregulators,buckregulatorNov02,2001APPLICATIONNOTE842MathcadCalculatesInputCapacitorforStep-DownBuckRegulatorAbstract:Step-downbuckregulatorsareextremelypopularinavarietyofportableandnon-portableequipment.Thesebuckconvertersareterminatedwithaninputcapacitor,CINandanoutputcapacitor,CO,attheoutput.CINprovideshigh-frequencyfiltering,sothatVINhaslowripple.Thisapplicationnotehelpsasystemdesignertoset-upMathcadandcomputeCINforaparticularstep-downDC-DCregulatordesign.Step-downbuckregulatorsareusedinportableandnon-portableequipment,suchasPDAs,cellphones,comp……
  • 所需E币: 5
    时间: 2020-1-10 11:11
    大小: 576.92KB
    上传者: 238112554_qq
    Buried_Capacitance_Design_GuidelinesGUIDELINESFORBURIEDCAPACITANCEtmDESIGNSanmina-SCICorporationPCBDivisionThefollowingareRegisteredTrademarksofSanmina-SCI:BC???ThefollowingareTrademarksofSanmina-SCI:??????CreatedbytheSanmina-SCITechnologyEngineeringTeam.DocumentNumber:PWB-PED-xxxRevision:APrintedintheUnitedStatesofAmericahttp://www.sanmina-sci.comTheteamencouragesfeedbackaboutthisdocument.E-maildfm_guide@sanmina-sci.comwithsuggestions.Copyright2003Sanmina-SCICorporationAllrightsreserved.Nopartofthisdocumentthatiscoveredbycopyrightshereonmaybereproducedorusedinanyformorbyanymeans……
  • 所需E币: 5
    时间: 2020-1-10 11:11
    大小: 982.57KB
    上传者: 238112554_qq
    Buried_Capacitance_Technical_0106……
  • 所需E币: 4
    时间: 2020-1-15 12:29
    大小: 204.64KB
    上传者: givh79_163.com
    Loadcapacitanceofinterfaces,LoadCapacitanceofInterfaces……
  • 所需E币: 0
    时间: 2020-2-12 15:53
    大小: 823.71KB
    上传者: quw431979_163.com
    aboutcapacitance迄今为止最深入的电容剖析,电脑硬件的深入分析篇--♂静之源→硬盘损坏全方位分析--|回首页|2005年索引|--[转帖]装机必备――硬件基础知识迄今为止最深入的电容剖析,电脑硬件的深入分析篇-Tag:电容前言关于电容我们不是在忽悠你知道显卡为什么会花屏吗?没错,你肯定听说过“主板爆浆”,或者你还在对商家唾沫横飞的“专业分析”深信不疑?但您知道“爆浆”为什么会发生,而爆浆产生的环境、条件、原理又是如何?你可能也被主板或显卡花屏所困惑,你知道罪魁祸首很可能是那个最不起眼的电容吗?当睡在你上铺的兄弟告诉你“铝电容就是比电解电容好,OSCON电容比铝电容好”,而你为此对他丰富的硬件知识佩服不已的时候,你是否会怀疑,这句话其实相当于:“摩托罗拉手机就是比GSM的手机好”――因为OSCON电容其实是铝电容的一种,而铝电容又是电解电容的一种。虽然这很可笑,但是你听不出来,因为你不像了解手机那样了解电容。当你告诉他铝电容其实就是电解电容的一种,甚至他推崇有加的钽电容其实也是他最看不上的“电解电容”的一种的时候,您一定能让你上铺那位兄弟感到尴尬。但真理是越辨越明,你有丰富的知识,那他只能选择沉默。而事实并不仅仅如此,当你看完本文后,能被你搞沉默的人绝对不止上铺那位兄弟,也许还包括那些试图玩点猫腻的奸商――在中国能做到这点就很NB了。因为我们相信你并不是那种仅仅满足于用半瓶子醋的DIY知识骗几个MM和菜鸟的“DIY玩家”,所以我们很真诚地邀请您阅读这篇有史以来IT媒体中最专业的关于电容的文章。请相信,我们不是在忽悠。入门什么是电容?在开始之前我们还是先向大家介绍一下本文的行文格式。为了方便大家阅读,本文由PCPOP编辑――小地,和业内资深的硬件专业人士――万鹏先生以对话的形式进行。本文的主体内容均由万鹏先生提……
  • 所需E币: 3
    时间: 2019-12-24 17:06
    大小: 79.95KB
    上传者: 二不过三
    摘要:本应用程序说明描述建模晶体,负载电容的方法。Maxim/Dallas>AppNotes>GENERALENGINEERINGTOPICSHIGH-SPEEDINTERCONNECTOSCILLATORS/DELAYLINES/TIMERS/COUNTERSKeywords:crystaloscillator,quartzcrystal,loadingcapacitor,loadingcapacitance,pullingrange,crystal,Jun16,2003circuitmodel,frequencyvariation,synthesizerAPPLICATIONNOTE2127ModelingofQuartzCrystalThisapplicationnote,describesamethodformodelingacrystal,withloadingcapacitance.Clockgenerator(CLKgen)designerscanuseacrystalmodeltoeasilydeterminetheloadingcapacitanceforarequiredfrequency.Circuitandsystemdesignercanusethemodeltosimulatethebehaviorofcrystaloscillators.Tomodelacrystal,weuseasimplecircuittomeasuretheoscillationfrequenciesunderdifferentloadingcapacitance.Then,……
  • 所需E币: 5
    时间: 2019-12-24 17:05
    大小: 94.62KB
    上传者: wsu_w_hotmail.com
    摘要:DC-DC转换器的电场和磁场的极好来源。他们的EMI频谱开始在开关频率和经常超过100MHz的扩展。在印刷电路板(PCB)布局,以尽量减少电容式联轴器和磁性联轴器护理必须行使。电路的寄生电容和寄生电感,必须进行评估,因此,早在设计阶段可适当权衡。Maxim>AppNotes>AUTOMOTIVEGENERALENGINEERINGTOPICSPOWER-SUPPLYCIRCUITSPROTOTYPINGANDPCBOARDLAYOUTKeywords:printedcircuitboard,PCBlayout,parasiticinductance,parasiticcapacitance,EMI,DC-DC,dcdc,Mar01,2001converters,convertors,groundplane,groundloopAPPLICATIONNOTE735LayoutConsiderationsforNon-IsolatedDC-DCConvertersAbstract:DC-DCconvertersareanexcellentsourceofelectricfieldsandmagneticfields.TheirEMIspectrumbeginsattheswitchingfrequencyandoftenextendsover100MHz.Tominimizecapacitivecouplingsandmagneticcouplingscaremustbeexercisedinprintedcircuitboard(PCB)layout.Parasiticcapacitanceandparasiticinductanceofthecircuitmustbeevaluatedsothatthepropertrade-offcanbemadeearl……