tag 标签: 陶瓷线路板

相关博文
  • 热度 8
    2023-8-18 11:15
    1071 次阅读|
    0 个评论
    半导体陶瓷基板 外形切割主要分为 激光切割与水刀切割 , 它们在切割 原理、特点 、 优缺点 等方面存在一些区别。下面就让我们来详细了解一下这两种切割方法的区别。 一、激光切割 1. 激光切割的 原理 激光切割是利用经聚焦的高功率密度激光束照射工件,使被照射的材料迅速熔化、气化、烧蚀或达到燃点,同时借助与光束同轴的高速气流吹除熔融物质,从而实现将工件割开。激光切割属于热切割方法之一。 2. 激光切割的分类 1)气化切割 激光气化切割多用于极薄 金属材料 和 非金属材料 (如纸、布、木材、塑料和橡皮等)的切割。 2)熔化切割 激光熔化切割主要用于一些不易氧化的材料或活性金属的切割,如 不锈钢 、钛、铝及其合金等。 3) 氧气切割 激光氧气切割主要用于碳钢、钛钢以及热处理钢等易氧化的金属材料。 4)划片与控制断裂 激光划片是利用高 能量密度 的激光在 脆性材料 的表面进行扫描,使材料受热蒸发出一条小槽,然后施加一定的压力,脆性材料就会沿小槽处裂开。激光划片用的激光器一般为 Q开关 激光器和 CO2激光器 。 控制断裂是利用 激光刻槽 时所产生的陡峭的 温度分布 ,在脆性材料中产生局部 热应力 ,使材料沿小槽断开。 二、水刀切割 划片刀 (Wafer Saw)主要由电铸镍基结合剂、金刚石/类金刚石等硬质颗粒组成。切割时由主轴带动刀片高速旋转获得高刚性,从而去除材料实现切割。由于刀片具有一定的厚度,要求划片线宽较大。 金刚石 划片刀能够达到的最小切割线宽为25~35um。切割不同材质、厚度的晶圆,需要更换不同的刀具。在旋转砂轮式划片过程中,需要采用去离子水对刀片进行冷却,并带走切割后产生的硅渣碎屑。 1、划片刀结构特点 划片刀表面粗粘,有凸起的硬质颗粒和刀口,划片刀的刀尖表面粗糙,刃部近似矩形,与水平面的夹角日接近 0°, 而 普通刀具,刀尖表面较为光滑,刃部尖锐,刀尖与水平面的夹角 较大 ; 2、高速转动 普通刀具利用锋锐尖端在物体表面施加集中应力 ,可直接分裂物体进行切割。划片刀与普通刀具不同。因为本身结构、材质特性,在静态或低速转动时,划片刀无法实现切割,必须高速旋转获得高刚度,从而以碾碎去除材料的形式实现切割(见 下图 )。在这种切割方式下,金刚石刀片以3000~40000r/min的高转速切割晶圆划片槽。同时,承载着晶圆的丁作台以一定的速度沿刀片与晶圆接触点的切线方向呈直线运动,切割晶圆产生的硅屑被去离子水冲走。 3、刀口 刀口是经磨刀后在刃部形成的,由顺刀方向硬质颗粒及其与结合剂尾端间的细微凹槽或空洞组成,其根据刀片配方不同而变化。刀口具有排屑和冷却的作用,刀口的存在使刀片切割能力得以维持。 4、划片刀切割机理 1.撞击 切割硅等硬脆性材料时,刀片依靠高速旋转使金刚石等硬质颗粒高频撞击晶圆,在表面形成微裂纹,压碎后利用刀口将碎屑带走。 2.刮除 切割延展性金属材料时,刀口持续刮擦物体表面,将表面拉毛,刮除,并将碎屑排除。 硬质颗粒的撞击和刀口的刮擦使材料能够从物体表面剥离,同时刀口能够将碎屑及时排除。这两者协同作用以保持物体表面材料被持续剥离,达到切割的效果。 3 、刀片磨损 基于刀片切割运动形式(高速旋转、水平进给)及工作环境(去离子水及添加剂),刀片主要受以下作用影响: 1)机械应力,法向、切向压力及切屑的摩擦力。 2)热应力,摩擦导致的温升热应力。 3)化学腐蚀,切割水酸碱度(pH值)及化学物质反应。 在一般情况下刀片连续切割,主要考虑机械应力导致的磨损。划片刀的组成、结构特点、运动模式和工作环境,决定刀片磨损主要为硬质颗粒断裂和结合剂磨耗两种模式。 三、 优缺点对比
  • 热度 10
    2023-8-10 11:52
    874 次阅读|
    0 个评论
    随着电子技术的快速发展, 斯利通 陶瓷 热沉 基板 在高温、高绝缘、高导热等领域的应用越来越广泛。在生产过程中,脉冲电镀填孔是一项关键技术,它直接影响着陶瓷线路板的导电性能和稳定性。本文旨在介绍陶瓷线路板之脉冲电镀填孔的技术性原理、工艺 验证 及 特点等 。 一、什么是脉冲电镀填孔 脉冲电镀填孔技术是利用脉冲电流在电极和电解液之间产生电化学反应,使电解液中的金属离子在电场作用下还原并沉积在陶瓷线路板的孔内,从而实现填孔。与传统的直流电镀相比,脉冲电镀填孔具有填孔速度快、填孔质量好、能耗低等优点。 传统的电镀工艺,一般都是采用直流电流。由于直流电流阴极表面附近的液层中金属离子不断被沉积,不可避免地会引起浓差极化和析氢等副反应,这将直接影响镀层的质量。 二 、原理分析 脉冲电镀是通过槽外控制方法改善镀层质量的一种强有力的手段。相比于普通的直流电镀电源,脉冲电镀电源提供的是一种具有一定通断比例的变化电流。在电流导通时,阴极表面附近液层中金属离子被充分沉积;当电流关断时,阴极周围的放电离子又恢复到初始浓度。这样,不断重复的周期脉冲电流主要用于金属离子的还原,同时,脉冲电源还可以选择相当大的瞬间电流,以实现极高过电位下的电沉积,这样得到的沉积层晶粒细化,还能降低析氢等副反应。 常见的脉冲电流波形有方波、三角波、锯齿波、阶梯波等。根据确定脉冲波形的几点原则 (如实镀效果、便于分析和研究、易于获得和调控、便于推广等),方波是最符合要求的脉冲波形。典型的方波脉冲波形,如图所示,可见脉冲电流实质上是一种通断的直流电。 三、脉冲封孔电镀实验 1.设备 整流器:脉冲整流器 电镀线:自动龙门线 铜球:不溶性阳极铜球 2.脉冲参数,共分为四段 电镀总时长4小时10分钟 ( 1 )段为直流电流密度: 1.5ASD 电流大小:24.2A 电镀时长20分钟 ( 2) 段脉冲 TOP面: 80T/MS , BOT面 4T/MS 1.5ASD电镀时长2小时15分钟 ( 3 )段脉冲 TOP面:60 T/MS BOT面,3 T/MS 1.6ASD电镀时长45分钟 ( 4 )段直流电流密度: 1.5ASD电流24A 电镀时长50分钟 3.脉冲电镀后切片效果图 四 、脉冲电镀的主要特点是什么? 脉冲电镀与间隙电镀相似,其主要特点是脉冲波的幅度大,频率高,脉冲宽度与脉冲间隙的比值一般小于 1。因此,脉冲电镀所允许的峰值电流密度比起直流电镀、周期换向电镀或间隙电镀都要大许多倍。又因脉冲持续时间和脉冲间隙时间一般以毫秒计算,所以脉冲电镀可以克服周期换向电镀方法中反向时间太长的缺点。 五、脉冲电镀 填孔的 优点 :   (1)有利于设计叠孔和盘上孔;   (2)改善电气性能,有助于高频设计;   (3)有助于散热;   (4)塞孔和电气互连一步完成;   (5)盲孔内用电镀铜填满,可靠性更高,导电性能比导电胶更好 。 随着电子技术的不断发展,陶瓷 热沉基板 之脉冲电镀填孔技术的应用前景广阔。随着技术的进步,脉冲电镀填孔技术将更加成熟,效率更高,质量更稳定。同时,随着 技术要求更高 ,脉冲 电镀填孔技术 的生产方式将得到更广泛的应用。
  • 热度 6
    2023-7-21 11:46
    891 次阅读|
    0 个评论
    一、随着科技的不断进步,生物医疗检测领域对于精度高、可靠性强的检测方法需求日益增长。 斯利通 陶瓷线路板 叉指电极 作为一种先进的电信号传输部件,逐渐在生物医疗检测中发挥重要作用。本文将详细介绍陶瓷线路板叉指电极的工作原理、应用案例以及在生物医疗检测中的优势与挑战。 二、陶瓷线路板与叉指电极的工作原理 斯利通 陶瓷线路板是以氧化铝、氮化硅等陶瓷材料为基体,通过印刷、光刻等技术制造而成的具有特定电路图案的板材。陶瓷材料的高绝缘性、高稳定性以及高耐温性等特点,使得陶瓷线路板在生物医疗检测中具有较高的可靠性。 叉指电极是一种周期性排列的金属电极,通过电化学工艺加工在陶瓷、玻璃等基体上。具有良好的导电性能和电化学特性,能够实现精确的电信号传输和测量。在生物医疗检测中,叉指电极常用于构建微电极阵列,实现对生物细胞的精准刺激和电信号采集。 三、陶瓷线路板与叉指电极在生物医疗检测中的应用案例 1. 电化学检测:构建电化学检测平台,如酶标仪、葡萄糖传感器等。通过叉指电极对生物分子进行特异性识别并结合陶瓷线路板的信号传输功能,实现高灵敏度、高选择性的检测。 2. 细胞刺激与成像:构建细胞培养和刺激装置,通过精确控制叉指电极的电信号刺激细胞,实现细胞生理活动的监测和成像。 3. 微流控芯片:结合微流控技术,可实现微流控芯片的制作。这种芯片可用于生物样品的高通量检测、分离和分析。 4. 生物传感器:如免疫传感器、 DNA 传感器等。这些传感器可用于生物标志物的实时监测和疾病诊断。 四、陶瓷线路板与叉指电极在生物医疗检测中的优点与挑战 优点: 1. 高稳定性:能够在复杂的环境条件下保持稳定的性能。 2. 高绝缘性:能够有效避免干扰信号的干扰。 3. 高耐腐蚀性:能够满足生物医疗检测的需求。 4. 高精度:能够实现高精度的电路图案和电极排列。 5. 高灵敏度:能够实现高灵敏度的电信号传输和测量,满足生物医疗检测的要求。 挑战: 1. 生产成本高:制作工艺复杂,需要昂贵的设备与材料,导致生产成本较高。 2. 规模化生产难度大:生产过程需要高度专业化的技术和管理能力,规模化生产难度较大。 3. 机械强度有限:陶瓷材料相对脆裂,容易受到冲击或振动的影响而损坏,机械强度有限。 4. 生物兼容性有待提高:尽管陶瓷材料在生物医疗检测中具有一定的应用优势,但其在生物兼容性方面仍存在一定的局限性,需要进一步改进。 五、未来发展方向及建议 1. 降低成本:通过技术研究和工艺改进,降低生产成本,提高其商业化应用的可行性。 2. 规模化生产:加强生产管理,优化工艺流程,提高规模化生产的能力,以满足不断增长的市场需求。 3. 提高机械强度:研发新型的陶瓷材料或复合材料,以提高机械强度,适应更广泛的应用场景。 4. 改善生物兼容性:通过表面涂层或改性处理等方法,改善生物兼容性,提高其在生物医疗检测中的应用效果。 5. 跨学科合作:加强生物医学、材料学、电化学等多个学科之间的交叉合作,共同推动在生物医疗检测领域的创新应用和发展。 六、结论 陶瓷线路板与叉指电极作为一种先进的电信号传输部件,在生物医疗检测中具有广泛的应用前景。尽管其在实际应用中仍面临一些挑战,但通过技术研究和创新,我们有信心实现其在生物医疗检测领域的更广泛应用。跨学科合作、规模化生产以及性能优化将是未来发展的主要方向。 七、展望未来 随着科技的不断发展,生物医疗检测领域对检测技术的要求越来越高。陶瓷线路板和叉指电极作为一种高性能的电信号传输和测量部件,将在生物医疗检测领域发挥越来越重要的作用。 未来,我们可以预期以下发展趋势: 1. 新材料的应用:随着陶瓷材料制备技术的进步,新型的陶瓷材料将不断涌现。这些新材料可能具有更好的机械强度、热稳定性和生物兼容性,在生物医疗检测中的应用提供更多可能性。 2. 微纳制造技术的发展:随着微纳制造技术的发展,尺寸和精度将得到进一步提升。这将使得陶瓷电路板和叉指电极能够应用于更小尺寸的生物医疗检测设备,实现更高的灵敏度和更低的检测限。 3. 多功能化的集成:除了实现电信号的传输和测量外,还可以通过集成其他功能元件,如微流体通道、光学传感器等,实现多种功能的集成。这种多功能化的集成将为生物医疗检测提供更全面、更便捷的解决方案。 4. 在线检测和实时监测:随着物联网、云计算等技术的发展,将能够实现生物医疗检测的在线化和实时化。通过与智能设备的连接,可以实现数据的远程传输和分析,为疾病的早期诊断和治疗提供更多信息。 5. 生物兼容性的改善:为了满足生物医疗检测领域日益增长的需求,生物兼容性将得到进一步改善。通过表面涂层、表面修饰或引入生物分子等方法,可以提高陶瓷材料与生物分子的相容性,降低免疫排斥反应,提高生物医疗检测的安全性和可靠性。 6. 生产工艺的优化:随着生产工艺的不断优化,生产成本将逐渐降低,规模化生产的可行性将得到提高。这将有助于满足日益增长的市场需求,推动陶瓷线路板和叉指电极在生物医疗检测领域的广泛应用。 总之, 陶瓷线路板叉指电极 在生物医疗检测领域具有广泛的应用前景。未来,通过跨学科的合作、新材料的研发、生产工艺的改进以及多功能的集成,我们可以期待 其 在生物医疗检测领域发挥更大的作用,为人类健康事业的发展做出更多贡献。
  • 热度 4
    2023-7-10 15:54
    1306 次阅读|
    1 个评论
    摘要: 电源模块在现代电子设备中起着至关重要的作用,而高效能量转换是实现可持续和高性能电源的关键。本文介绍了一种基于 斯利通 氮化铝陶瓷电路板的先进电源模块技术,通过优异的热传导性能和电气绝缘特性,实现了高效能量转换。文章将详细讨论该电源模块的设计原理、制造工艺以及性能评估结果。 引言 电源模块是电子设备中用于提供稳定电压和电流的关键组件。然而,传统电源模块在能量转换效率方面仍存在一定的限制。基于 斯利通 氮化铝陶瓷电路板的先进电源模块被提出,旨在实现更高效能量转换和更可靠的电源。 一、 设计原理 先进电源模块的设计基于 斯利通 氮化铝陶瓷电路板的优异性能。以下是该电源模块的关键设计原理: a. 优异的热传导性能:氮化铝陶瓷具有出色的热传导特性,能够快速将电源模块产生的热量传导到散热器,降低温度提高效率。 b. 电气绝缘特性:氮化铝陶瓷具有优异的绝缘性能,能够有效隔离电源模块的高压和低压部分,提高安全性和可靠性。 c. 低传导损耗:氮化铝陶瓷电路板具有低电阻和低介电损耗,减少能量在电路板中的传导损耗,提高转换效率。 IGBT模块 二、 制造工艺 先进电源模块的制造工艺包括以下步骤: a. 氮化铝陶瓷电路板制备:选择高纯度的氮化铝陶瓷材料,通过化学气相沉积(CVD)或烧结工艺制备具有平整表面和优异热传导性能的电路板。 b. 组件集成:将电源模块的各个组件,如开关电源、整流器和滤波器等,集成到氮化铝陶瓷电路板上。 c. 封装和封装:将制造的电源模块封装在保护壳体中,以确保其在恶劣环境下的可靠运行。 三、 性能评估 通过实验评估先进电源模块的性能,以下是一些数据化的结果: a. 转换效率:先进电源模块在全负载范围内实现了高达95%的转换效率,提供了高效能量转换的能力。 b. 稳定性:在不同负载条件下,先进电源模块表现出低于1%的输出波动,具有稳定可靠的输出性能。 c. 温度特性:先进电源模块在宽温度范围内实现了低于0.1%的温度漂移,保持稳定的转换效率。 四、 应用案例 基于氮化铝陶瓷电路板的先进电源模块在以下领域具有广泛应用: a. 电动汽车:用于电动汽车的能量转换和电池管理系统,实现高效率的电能利用和充电效率。 b. 工业设备:应用于工业自动化设备的电源系统,提供稳定、高效的电源供应。 c. 太阳能和风能系统:用于太阳能和风能系统的能量转换和储存,实现可再生能源的高效利用。 五、 结论 基于 斯利通 氮化铝陶瓷电路板的先进电源模块通过优异的热传导性能和电气绝缘特性,实现了高效能量转换。它具有高转换效率、稳定性和温度特性,适用于电动汽车、工业设备和可再生能源系统等领域。未来的研究和发展将进一步推动该电源模块技术的创新和应用扩展,提高能源转换的效率和可靠性,促进可持续能源发展。
  • 热度 8
    2023-7-10 15:52
    974 次阅读|
    0 个评论
    摘要:MEMS(微机电系统)陀螺仪在惯性导航、姿态控制和运动测量等领域中具有重要应用。然而,传统MEMS陀螺仪在尺寸和性能方面存在一定的限制。本文介绍了一种基于 陶瓷 基板 的技术芯片实现了小型化MEMS陀螺仪的技术,通过优异的机械稳定性和优良的热特性,实现了高性能的陀螺仪测量。文章将详细讨论该陀螺仪的设计原理、制造以及工艺性能评估结果。 引言MEMS陀螺仪是一款用于测量角度速度和角度变化的微型传感器,全面评估导航系统、惯性导航仪尺寸和无人机等领域。然而,传统MEMS陀螺仪在和性能方面面临着一定的挑战。提出了基于陶瓷基座的小型化MEMS陀螺仪,旨在实现更小尺寸和更高性能的陀螺仪测量。 设计原理 小型化MEMS陀螺仪基于内置陶瓷基板的优异性能。以下是该陀螺仪的关键设计原理: A。优异的机械稳定性:陀螺仪具有较高的硬度和机械强度,能够抵抗幼儿振动和冲击,从而提高陀螺仪的稳定性和可靠性。 b. 优良的热震性能:建立了陶瓷 基板 具有良好的热震性能,能够将陀螺仪的热量快速到达周围环境,减少温度引起的测量托盘。 C。最低限度:陶瓷基板具有较低的温度系数,能够在宽的温度范围内保持稳定的测量性能。 制造工艺小型化MEMS陀螺仪的制造工艺包括以下步骤: A。陶瓷基板制作:选择高梯度的陶瓷材料,通过化学气相沉积(CVD)或烧结工艺制备具有表面和优异机械性能的基板。 b. MEMS传感器制造:利用标准的MEMS制造工艺,在陶瓷基板上制作陀螺仪的感应结构、电极层和控制电路。 C。封装和封装:将制造的MEMS陀螺仪封装安装在受保护的壳体中,以保证其在泰勒环境下的可靠运行。 性能评估通过实验评估小型化MEMS陀螺仪的性能,以下是一些数据化的结果: A。精确度:小型化MEMS陀螺仪在静态和动态条件下实现了高达0.01°/s的角速度精确度。 b. 噪声性能:小型化MEMS陀螺仪具有低于0.001°/s/√Hz的噪声密度,实现了精确的低噪声测量。 C。温度性能:小型化MEMS陀螺仪在宽温度范围内实现了低于0.1°/s的温度基本,保持稳定的测量性能。 基于陶瓷 基板 核心的小型化MEMS陀螺仪的应用案例在以下领域具有广泛应用: A。惯性导航系统:用于无人机、机器人和导航仪器中,提供精确的角度变化测量,实现精准的定位和导航。 b. 姿势控制:评估飞行器、汽车和船舶等控制系统中,实现姿势的姿势控制和稳定性。 C。运动测量:用于运动分析、体育科学和虚拟现实等领域中,提供准确的运动记录和角度速度测量。 结论基于 陶瓷 基板 的小型化MEMS陀螺仪通过优异的机械稳定性和热特性,实现了高性能的陀螺仪测量。其具有优良的精度、低噪声和稳定的温度性能,适用于惯性导航该技术的发展将进一步推动小型化MEMS陀螺仪的创新和应用扩展,为各种应用提供更精确、更可靠的角度速度测量解决方案。