tag 标签: 陶瓷金属化

相关博文
  • 热度 4
    2023-10-28 10:47
    776 次阅读|
    0 个评论
    深入了解陶瓷基板金属化,陶瓷与金属的完美结合
    在大功率电子器件使用中为实现芯片与电子元件之间的互联,陶瓷作为 封装基板 材料,需对其表面进行金属化处理。陶瓷金属化有如下要求:优良的密封性,金属导电层的方阻和电阻率小,同时与陶瓷基板具有较强的附着力,陶瓷经金属化后仍需具备高的热导率。因此延展性优良、导热性和导电性高的 Cu ,成为在功率电子器件中最常用的材料,图 1 为陶瓷基板覆铜示意图。 图 1 陶瓷基板覆铜示意图 虽然陶瓷具有相较于其他两种封装基板有着更为优异的综合性能,但是由于陶瓷材料作为强共价键型化合物,其电子配位十分稳定,不易与其他材料反应,并且与常见金属之间的润湿困难,而陶瓷基板表面金属化后的性能与功率电子器件在工作时的稳定性关系密切,故制约陶瓷封装基板广泛应用的原因便在于此,因此探究陶瓷表面金属化意义重大。目前常见的陶瓷金属化的方法主要包括化学镀金属化、直接覆铜金属化、厚膜金属化、薄膜金属化等 。以下是斯利通整理的几类陶瓷封装金属化工艺。表 1 为不同陶瓷金属化方法的优缺点。 表 1 陶瓷金属化方法及其优缺点 化学镀金属化 化学镀金属化是指通过化学反应的方法,金属离子借助还原剂还原成金属,并沉积到基底材料表面的方法 ,核心在于通过可控制的氧化还原反应产生金属层,图 1.1 为化学镀过程示意图。化学镀铜即将溶液中的 Cu 2+ 还原成 Cu 原子,并在催化活性的基板上沉积,反应原理可用下式表示: 第一步: Cu 2+ 在阴极被还原成 Cu 原子,如式 1-1 所示; 第二步:甲醛在阳极提供反应所需的电子,如式 1-2 所示; 第三步:化学镀铜的氧化还原方程式,如式 1-3 所示。 图 1.1 化学镀铜流程示意图 直接覆铜金属化 直接覆铜金属化是指在高温、弱氧氛围中利用 Cu 的含氧共晶液直接将 Cu 箔覆接在 陶瓷表面的方法,主要用于 Al 2 O 3 和 AlN 陶瓷表面。原理为 Cu 与 O 反应生成的 Cu 2 O 和 CuO ,在 1060-1083 ℃温度范围内可以与基板中 Al 反应生成 CuAlO 2 和 CuAl 2 O 4 的尖晶石物质,促使陶瓷与 Cu 可以形成较高的结合强度,在对 AlN 陶瓷基板进行直接覆铜金属化时,需先对 AlN 进行氧化处理,在其表面形成 Al 2 O 3 ,图 2.1 为 AlN 直接覆铜金属化的流程示意图。反应式如下: 图 2.1 AlN 直接覆铜金属化流程示意图 厚膜金属化 厚膜金属化是将金属浆料通过丝网印刷的方法涂敷在陶瓷表面,然后经高温干燥热处理后形成金属化陶瓷基板的技术。图 3.1 为丝网印刷工艺示意图,其中浆料主要由功能相、粘结剂、有机载体组成,功能相是厚膜浆料中主体,即在陶瓷表面经涂覆金属粉末后经热处理工艺形成的金属膜层;粘结剂是玻璃相或氧化物等经高温烧结后,提升金属膜层与陶瓷基板之间的附着力;有机载体是用于提升有机浆料表面活性,使得浆料混合更加均匀的有机溶剂或表面活性剂。 图 3.1 丝网印刷工艺示意图 薄膜金属化 薄膜金属化是在高真空条件下,用物理方法将固体材料表层电离为离子,随后经过低 压气体在陶瓷基板表面沉积所需薄膜的工艺,即物理气相沉积技术 ( Physical Vapour Deposition , PVD ) ,主要包括有磁控溅射镀膜、离子镀膜、电弧镀等。图 4.1 为磁控溅射镀膜的原理图,核心在于 Ar 2+ 经电场加速后轰击由欲被溅射物质做成的靶电极,当离子能量合适的情况下, Ar 2+ 会将靶材表面的原子溅射出来进而会沿着一定的方向射向衬底,从而实现薄膜的沉积。 图 4.1 磁控溅射原理示意图 上述几种陶瓷基板金属化方法,各有优缺点,化学镀金属化,具备很高的生产效率,可以实现批量化生产,但是,金属层与陶瓷基板之间结合力有限,不能满足很多特定的应用场景。直接覆铜金属化,也就是高温烧结法,在满足生产效率的同时,金属层和陶瓷基板具备一定的结合强度,是当前比较常见的一种生产工艺,但是,由于其是采用高温烧结的方式进行的金属化覆膜,因此,限制了很多低熔点金属的应用。厚膜金属化,也就是丝网印刷,生产简单可操作,但是,其对于金属化厚度和线宽线距的精度不能实现很好的控制,无法生产高精度的精密线路。 薄膜金属化 ,也就是磁控溅射,利用了范德华力的原理,使得金属层和陶瓷基板具有很强的结合力,但是,生产效率低下,同时,也只能形成很薄的金属层,通常在纳米级别。 富力天晟科技公司有效利用几种金属化工艺相结合的方法,在生产工艺流程中,首先,通过磁控溅射工艺( 薄膜金属化 )在陶瓷基板表面形成 50-300nm 的金属种子层(钛层 50-100nm ,铜层 100-300nm ),金属种子层与陶瓷基板之间通过范德华力结合,然后,再通过电镀(化学镀)在金属种子层上增加金属厚度,通过这种方式,比单纯通过磁控溅射或者化学镀的方法生产出来的陶瓷基板线路性能要优良很多,一方面,可以有效加强金属层与陶瓷基板的结合强度,另一方面,也可以实现不同层厚(厚度 1000 μ m )的金属化生产。 富力天晟科技 公司经过多年的发展,已经和国内外数千家半导体、芯片、传感器、通信、射频器件、大功率照明等企业建立长期稳定的合作关系,为各大公司生产符合客户要求的高性能 陶瓷基板精密线路 产品,提供专业的一站式解决方案,成为客户新产品研发、技术迭代创新、公司发展过程中的重要战略伙伴。
  • 热度 8
    2023-6-8 11:50
    1037 次阅读|
    0 个评论
    半导体制冷片是电子器件中重要的辅助元件,用于控制器件的温度,从而保证器件的稳定性和可靠性。在半导体制冷片的制造过程中, 半导体制冷片的基板 材料选择是非常关键的,因为基板材料的性能会直接影响到制冷片的性能。 同时作为精密制冷片新型技术,对陶瓷基板的要求也高于普通基板。 1.外观要求:严格的铜面平整度,粗糙度要求控制在0.5um以内,铜面上不允许有凹坑、铜颗粒、氧化、任何形式的外观划伤等。 2.尺寸要求:完成板厚控制公差在10-20um以内,而陶瓷板材的来料公差就有±30un公差,这就意味着需要挑选公差范围在10以内的陶瓷板材,而完成铜厚、镍金厚的均匀性要控制在10um以内,极具有挑战性。 a.目前的控制方案是提高电镀均匀性,且需要保证铜面无颗粒; B.或者增加抛光研磨工序,使铜面平整且板厚控制在客户要求范围内。 3.线宽、线距要求:精密制冷片线宽、线距要求控制在±10-20um以内,这就需要在线路加工时曝光精度要求高,需要使用CCD或者LDI曝光机俩控制线路精度,另外在蚀刻时线宽线距需要控制在中值。 DPC(Deep Proton Conduction)陶瓷基板是目前半导体制冷片制造中最常用的基板材料之一。DPC陶瓷基板具有许多优异的性能,包括高介电常数、高介电损耗、低温度系数和高热导率等,这些性能可以保证制冷片具有良好的散热效果,并且可以在高温环境下稳定工作。 热导率: DPC陶瓷基板的热导率是陶瓷基板中最高的,可以更快地传导热量,从而提高制冷片的散热效果。根据测试数据,采用DPC工艺制备的陶瓷基板热导率可以达到20 W/mk左右,是传统陶瓷基板的10倍左右。 温度系数: DPC陶瓷基板的温度系数非常低,能够保证在高温环境下仍然能够保持较低的温度,从而保证电子器件的稳定性和可靠性。根据测试数据,采用DPC工艺制备的陶瓷基板温度系数可以达到-6 ppm/K左右,是传统陶瓷基板的10倍左右。 介电常数: DPC陶瓷基板的介电常数非常高,可以提高制冷片的介电性能,从而更好地保护电子器件。根据测试数据,采用DPC工艺制备的陶瓷基板介电常数可以达到4.5以上,是传统陶瓷基板的2倍左右。 高强度、高硬度: DPC陶瓷基板具有高强度和高硬度,能够保证制冷片在高温和恶劣环境下的强度和稳定性。根据测试数据,采用DPC工艺制备的陶瓷基板强度可以达到100兆帕以上,是传统陶瓷基板的10倍左右。 高温、高频和高可靠性应用需求增加:在高温、高频和高可靠性的电子器件中, DPC陶瓷基板的应用越来越广泛,需求也越来越大。随着这些应用领域的不断发展,对DPC陶瓷基板的性能要求也将更高。随着电子器件的不断发展和应用领域的不断扩大,DPC陶瓷基板的应用前景也将更加广阔。以下是DPC陶瓷基板目前的发展和未来趋势: 新型半导体器件的发展:新型半导体器件的不断发展,对 DPC陶瓷基板的性能提出了更高的要求。例如,新型的量子计算器件、光子器件、电力电子器件等,对DPC陶瓷基板的热导率、介电常数、机械强度等性能提出了更高的要求。 更高的可靠性要求:在高可靠性的电子器件中, DPC陶瓷基板的应用越来越广泛。随着这些应用领域的不断发展,对DPC陶瓷基板的耐腐蚀性、耐辐射性、耐磨损性等性能提出了更高的要求。 更小型化和轻量化:在移动设备、电子消费品等领域, DPC陶瓷基板的小型化和轻量化已成为一个重要的发展趋势。为了满足这一需求,DPC陶瓷基板需要实现更高的集成度、更小的尺寸和更轻的重量。 总之, DPC陶瓷基板具有高热导率、低温度系数、高介电常数、高强度、高硬度等优异的性能,这些性能使得DPC陶瓷基板在半导体制冷片中成为制冷片的首选基板材料。采用DPC工艺制备的 DPC陶瓷基板 具有更高的性能和更广泛的应用前景,可以满足半导体制冷片不断提高的性能要求,为电子器件的稳定性和可靠性提供更加可靠的保障。
  • 热度 7
    2022-12-5 16:45
    1503 次阅读|
    0 个评论
    陶瓷金属化工艺有哪些?覆铜板工艺优缺点分析
    陶瓷片成型后需要通过陶瓷金属化工艺使陶瓷表面沉积一层致密结合力良好的金属层,再通过普通 FR-4 线路板工艺流程制作电路板。这一整套工艺流程的核心点在于陶瓷的金属化,目前市面上主流的陶瓷金属化工艺分为以下几种,各种工艺的优缺点如下: 斯利通DPC陶瓷电路板又称直接镀铜陶瓷电路板,主要用蒸发、磁控溅射等面沉积工艺进行基板表面金属化,先是在真空条件下溅射钛然后再溅射铜颗粒,再进行电镀增厚,在薄膜金属化的陶瓷板上采用影像转移方式制作线路,再采用电镀封孔技术形成高密度双面布线间的陶瓷电路板。 因为陶瓷基板优良的电热化学特性,其在电子封装领域占据着越来越重要的角色,被广泛应用在高功率IGBT、 大功率电子模组、微波加热电子元器件、微型制冷片、毫米波激光雷达、传感器等高科技技术型行业。相信随着未来科技的发展,陶瓷电路板在电子信息化产业的前进道路上更能一展宏图!
  • 热度 17
    2021-4-2 11:53
    2288 次阅读|
    0 个评论
    陶瓷金属化工艺,陶瓷和金属的强强联合
    科学的发展自然离不开硬件的支持,进入21世纪,智能设备持续向数字化、小型化、柔性化、低能耗化、多功能化、高可靠性化等方向发展,与之密切相关的电子封装技术也进入了超高速发展时期。 常用的电子封装基板材料包括有机封装基板、金属基复合基板和陶瓷封装基板三大类。随着智能设备的进化,传统的基板材料已然不能满足当下发展的需求,于是乎基板材料就由有机材料、金属材料、进化为了陶瓷材料。也自然衍生出了各种各样的陶瓷金属化技术。 陶瓷材料相比传统的基板材料有众多优点: 1.低通讯损耗-陶瓷材料本身的介电常数使得信号损耗更小。 2.高热导率-芯片上的热量直接传导到陶瓷片上面,无需绝缘层,可以做到相对更好的散热。 3.更匹配的热膨胀系数-陶瓷和芯片的热膨胀系数接近,不会在温差剧变时产生太大变形导致线路脱焊、内应力等问题。 4.高运行温度-陶瓷可以承受波动较大的高低温循环,甚至可以在500-600度的高温下正常运作。 5.高电绝缘性-陶瓷材料本身就是绝缘材料,可以承受很高的击穿电压。 6.高化学稳定性-陶瓷材料在加工过程中能耐酸、碱、有机溶剂的浸蚀。 7.高机械强度-陶瓷材料本身具有不错的机械强度,稳定性好 因此,陶瓷材料逐渐发展成为新一代集成电路以及功率电子模块的理想封装基材。目前常用的陶瓷基板材料包括Al2O3、SiC、AlN以及Si3N4等。陶瓷金属化技术也得到了广泛的关注和迅速发展。 1.厚膜法 厚膜法是在基板上通过丝网印刷技术、微笔直写技术和喷墨打印技术等微流动直写技术在基板上直接沉积导电浆料,经高温烧结形成导电线路和电极的方法,该方法适用于大部分陶瓷基板。厚膜导电浆料一般由尺寸微米甚至纳米级的金属粉末和少量玻璃粘结剂再加上有机溶剂组成。在高温下浆料中的玻璃粘结剂与基板相结合,使导电相粘附在基板表面,形成导电线路。 厚膜法中以丝网印刷技术应用最为广泛,该技术优点是工艺简单,但缺点也很明显:受限于导电浆料和丝网尺寸,制备的导线最小线宽难以低于60μm,并且无法制作三维图形,因此不适合小批量、精细基板的生产。微笔直写技术和喷墨打印技术虽然能沉积高精度导电图形,但是对浆料粘度要求较高,容易发生通道堵塞。并且,采用厚膜法成形的导电线路电学性能较差,因此采用厚膜法的陶瓷基板仅能用于对功率和尺寸要求较低的电子器件中。 2.直接敷铜法 直接敷铜法(Direct Bonded Copper,DBC)主要是根据Al2O3陶瓷基板发展起来的陶瓷表面金属化技术,后来又应用于AlN陶瓷,已广泛应用于汽车、电力、航空、航天及军工等领域。 将铜箔(厚度大于0.1 mm)在N2保护下,温度1065℃-1083℃范围内直接键合到Al2O3陶瓷基片表面。纯铜在熔融状态下对Al2O3陶瓷不润湿,需要在反应界面引入氧元素,高温下产生的Cu-Cu2O共晶液对 Al2O3有良好的润湿性,通过生成的CuAlO2作为过渡层,可以将铜箔直接敷接在Al2O3陶瓷基板上。 DBC技术主要的缺点是铜箔厚度较大,后续通过化学蚀刻过程很难得到高精度导线,而且界面氧元素难以控制,铜箔与陶瓷之间容易出现气孔,导致最终器件性能不稳定,还有待于进一步的基础技术研究。另外,受限于技术原理,铜箔敷接的方式无法实现通孔金属化。 3.薄膜法 薄膜法作为一种晶片级制造技术,是微电子制造中金属薄膜沉积的主要方法:首先在金属化之前,应按照一定的要求将已烧结好的瓷片进行相关处理,以达到周边无毛刺、无凸起,瓷片光滑、洁净。然后再通过磁控溅射,在陶瓷表面沉积一层薄薄的Cu层作为种子层,以便后续的电镀工艺开展。然后进行闪电镀来给种子铜增厚(保护种子铜)。再然后通过贴膜、曝光、显影等工序完成图形转移,再电镀使Cu层增长到所需厚度,最终通过退膜、蚀刻工序完成导电线路的制作。 斯利通陶瓷基板,金属层与基板之间结合力稳定(可达45Mpa)金属平整性好。线/间距(L/S)分辨率可以做到20μm,铜厚在铜厚区间1μm~1mm内自由选择,最小孔径仅75um,且支持PTH(电镀通孔)/Vias(导通孔),是产品可靠性的保障。 近年来,采用薄膜工艺制备的陶瓷基板已在功率型LED封装中显示出了极强的竞争力。物联网下游产业链中相关的各种各样电子产品也都离不开陶瓷基板。根据PRISMARK、华泰证券研究所统计,通信、PC、消费电子占基板需求量约70%左右,主要集中在无线、传输、数据通信等应用领域。 陶瓷材料的发展一直都是备受瞩目的,关于陶瓷金属化的研究也从来没有停止过,斯利通并不会因为暂时的优势领先就止步不前,只有不断的攻坚研发,才能不被时代的洪流所淘汰。陶瓷基板更加符合数字化、小型化、柔性化、低能耗化、多功能化、高可靠性化的未来发展方向。它是一种更可行的选择。是今后电子封装材料可持续发展的重要方向。
  • 热度 7
    2021-3-10 14:13
    2285 次阅读|
    4 个评论
    什么是陶瓷金属化?
    尤其是随着5G时代的到来,半导体芯片功率不断增加,轻型化和高集成度的发展趋势日益明显,散热问题的重要性也越来越突出,这无疑对封装散热材料提出了更为严苛的要求。如何做好芯片热管理,将会是很长一段时间内行业必须要面对的问题。 在功率型电子元器件的封装结构中,封装基板作为承上启下、保持内外电路导通的关键环节,兼有散热和机械支撑等功能。受到了越来越多的制造商的重视。 怎么样才算是好的基板材料? 高热导率,低介电常数,有较好的耐热、耐压性能;有足够的强度、刚度,对芯片和电子元器件起到支撑和保护的作用;热膨胀系数接近芯片材料(如Si,GaAs),避免芯片的热应力损坏;成本尽可能低,满足大规模工业生产应用的需求;具有良好的加工、组装和安装性能。 陶瓷作为典型的无机非金属材料,似乎与金属站在了完全相反的位置上,但两者各自的优势又实在太突出,于是人们开始想法将陶瓷和金属结合起来,各显所长。陶瓷金属化技术就这么诞生了。多年来,陶瓷金属化一直是一个热门的课题,国内外学者都对其展开了深入的研究。 陶瓷材料的优势 1.低通讯损耗-陶瓷材料本身的介电常数使得信号损耗更小。 2.高热导率-芯片上的热量直接传导到陶瓷片上面,无需绝缘层,可以做到相对更好的散热。 3.更匹配的热膨胀系数-陶瓷和芯片的热膨胀系数接近,不会在温差剧变时产生太大变形导致线路脱焊、内应力等问题。 4.高结合力-斯利通陶瓷电路板产品的金属层与陶瓷基板的结合强度高,最大可以达到45MPa(大于1mm厚陶瓷片自身的强度)。 5.高运行温度-陶瓷可以承受波动较大的高低温循环,甚至可以在500-600度的高温下正常运作。 6.高电绝缘性-陶瓷材料本身就是绝缘材料,可以承受很高的击穿电压。 陶瓷用于电路中,必须首先对其金属化,即在陶瓷表面敷一层与陶瓷粘结牢固而又不易被熔化的金属薄膜,使其导电,随后用焊接工艺与金属引线或其他金属导电层相连接而成为一体。 可以说,陶瓷金属化效果的优劣,将直接影响最终的封装效果。 陶瓷金属化常用的制备方法主要有Mo-Mn法、活化Mo-Mn法、活性金属钎焊法、直接覆铜法(DBC)、磁控溅射法。 1、Mo-Mn法 Mo-Mn法是以难熔金属粉Mo为主,再加入少量低熔点Mn的金属化配方,加入粘结剂涂覆到Al2O3陶瓷表面,然后烧结形成金属化层。传统Mo-Mn法的缺点在于烧结温度高,能源消耗大,且配方中无活化剂的参与导致封接强度低。 2、活化Mo-Mn法 活化Mo-Mn法是在传统Mo-Mn法基础上进行的改进,改进的方向主要有:添加活化剂和用钼、锰的氧化物或盐类代替金属粉。这两类改进方法都是为了降低金属化温度。 活化Mo-Mn法的缺点是工艺复杂、成本高,但其结合牢固,能极大改善润湿性,所以仍是陶瓷-金属封接工艺中发明最早、应用范围比较广的工艺。 3、活性金属钎焊法 活性金属钎焊法也是一种应用较广泛的陶瓷-金属封接工艺,它比Mo-Mn法的发展晚10年,特点是工序少,陶瓷-金属的封接只需要一次升温过程就能完成。钎焊合金含有活性元素,如Ti、Zr、Hf和Ta,添加的活性元素与Al2O3反应,在界面处形成具有金属特性的反应层,这种方法可以很容易地适应大规模生产,与钼-锰工艺相比,这种方法相对简单经济。 活性金属钎焊法缺点在于活性钎料单一,导致其应用受到一定限制,且不适于连续生产,仅适合大件、单件生产或小批量生产。 4、直接敷铜法(DBC) DBC是在陶瓷表面(主要是Al2O3和AlN)键合铜箔的一种金属化方法,它是随着板上芯片(COB)封装技术的兴起而发展出来的一种新型工艺。其基本原理是在Cu与陶瓷之间引进氧元素,然后在1065~1083℃时形成Cu/O共晶液相,进而与陶瓷基体及铜箔发生反应生成CuAlO2或Cu(AlO2)2,并在中间相的作用下实现铜箔与基体的键合。 5、磁控溅射法 磁控溅射法是物理气相沉积的一种,是通过磁控技术在衬底上沉积多层膜,具有优于其他沉积技术的优点,如更好的附着力,更少的污染以及改善沉积样品的结晶度,获得高质量的薄膜。此法所得金属化层很薄,能保证零件尺寸的精度。DPC工艺支持PTH(电镀通孔)/Vias(导通孔)。可进行高密度组装-线/间距(L/S)分辨率可以达到20μm,从而实现设备的轻量化,小型化,集成化。 陶瓷金属化作为一种新型材料具有许多独特的优点,在不远的将来,陶瓷金属化材料必将大放光彩。斯利通作为一家专注于陶瓷金属化多年的高新技术企业,旗下生产的陶瓷基板一直广受制造商的喜爱。