tag 标签: 硬件

相关帖子
相关博文
  • 2022-8-10 16:28
    175 次阅读|
    0 个评论
    工业物联网 为传统制造业带来的产业变革,使工厂的生产效率得到大幅提升,减少了生产过程的能源消耗,降低了生产成本,从技术角度推动了企业的高质量发展。目前,随着工业 物联网 相关技术的不断成熟,其应用已涵盖企业的供应链管理,生产过程工艺优化,生产设备监控管理,安全生产管理, 动环监测 及能耗管理等多个环节。在此基础上,伴随着 5G 技术的不断发展,“5G+工业物联网”的应用趋势成为了传统制造业向数字化、智能化转型的关键,应运而生的 5G工业网关 ,顺势成为建设智慧工厂的刚需。 一、应用案例 某智慧工厂 方案 服务商,需要一款用于车间生产设备( 数控机床 )的数据采集和监控管理的5G 工业网关 产品。此前,该用户曾基于x86架构自主研发了一款5G工业 网关 ,但因现场故障率较高且不能长时间稳定运行,迫切需要进行产品的迭代。在新产品研发评估阶段,用户了解到 飞凌嵌入式 推出的高性价比5G工业网关FCU2201。经过样机测试,用户决定放弃自主研发,批量使用FCU2201,因FCU2201满足了用户以下需求: 1. 无需产品研发投入; 2. 无风扇散热设计,规避了风扇故障带来的稳定性隐患; 3.严苛的 EMC 防护设计和工业级品质,可在-40℃~+80℃环境下长时间稳定运行; 4. 大幅降低了产品成本; 5.Ubuntu 18.04系统,与用户当前32位x86平台使用系统一致,降低了软件移植难度; 6. 多路RS485和双路千兆以太网,满足多节点PLC/CNC的连接; 7.全网通5G/4G/双频WiFi,组网方式灵活; 8. 主频高达1GHz,可满足本地数据处理和轻量级 边缘计算 。 应用场景拓扑简图 目前,用户已将高性价比5G工业网关FCU2201成功批量用于工厂智能化改造项目,且现场反馈良好。高性价比5G工业网关FCU2201采用 ARM Cortex -A53架构处理器设计,以低成本的定位为用户提供工业类数据采集和处理应用,赋能“5G+工业物联网”,助力传统制造业进行产业升级。 二、接口参数 FCU2201的出现,满足了工业网关与智慧工厂的上述需求,利用边缘云进一步降低时延,提高了采集、分析、调度等应用场景的速度,为用户提供了更智能、更高效的通信 解决方案 ,也为未来智慧工厂打开了想象空间。https://www.forlinx.com/product/153.html
  • 热度 1
    2022-7-1 16:54
    505 次阅读|
    0 个评论
    OK3568-C开发板是飞凌嵌入式新推出的嵌入式开发板,采用核心板+底板的分体式设计,基于 Rockchip RK3568 处理器设计,该处理器具有高性能、低功耗特点,功能丰富,可玩性极高。 OK3568-C开发板简介 OK3568-C开发板基于RK3568处理器设计,RK3568 采用先进的22nm制程工艺,四核64位 Cortex -A55架构,拥有 独立的NEON协处理器和神经网络处理器NPU,可应用于计算机、手机、个人移动互联网,数字多媒体设备。 OK3568-C开发平台核心板和底板采用接插件的连接方式,板载外设资源和接口很多。 详细的功能参数以及接口请到飞凌嵌入式官网参看OK3568-C开发板的产品简介: https://www.forlinx.com/product/147.html OK3568-C测试 下面对OK3568-C进行功能以及接口测试。 2.1 准备工作 在测试之前,需要准备以下材料: 1.12v2A DC电源线 2.网线 3. Type -C数据线 4.鼠标键盘 5.HDMI线(非必须) 值得注意的是,HDMI、 MIPI-DSI、LVDS显示方式默认都打开了,可根据自己手头的显示设备选择相应的显示方式,当然,不使用显示设备也可以的。 2.2登录系统 进入设备的方式有很多种,如果不使用屏幕,可以使用串口和SSH登录,但是SSH登录需要先连接网络。 2.2.1 QT界面测试 笔者这里使用的是HDMI的方式,连接设备后界面如 下: 以上就是所有应用,使用鼠标就可打开相应功能界面,主要有硬解码、Camera、OpenGL、音频、网络(以太网和WIFi)、UA RT 、 SPI 等功能,这些操作都很简单,具体方式请参看《OK3568-C_ Linux 用户使用手册》,笔者不再赘述了。 2.2.2串口登录 将Type-C 的调试串口接到PC,如果串口驱动没有问题,在设备管理器可看到串口号。 值得注意的是, 在使用串口登录前,先安装串口驱动,串口 芯片 是CP201x,笔者的电脑已经安装过了。 接下来就可使用终端工具登录系统,笔者这里使用的是Xshell,当然也可使用其他的工具,比如putty。 登录成功后打印信息如下: 串口设置: 波特率 115200、数据位 8、停止位 1、无校验位、无流控制。 2.2.3 SSH登录 在使用之前,需要事先连接网络,笔者这里使用的是以太网,事先需要使用串口的登录,然后输入以下 命令 查看IP地址: # ifconfig 也可修改网络 IP地址 ,使用以下命令: # ifconfig eth0 192.168.101.5 当然啦,如果已经将以太网配置成DHCP模式,那么在只要插上网线就会得到一个IP地址。修改/etc/network/inteRFaces文件即可,修改内容如下: 然后就可使用ifconfig查看IP。 接下来就可使用SSH登录系统了,还是可以使用Xshell等工具,当然也可在 ubuntu 系统中使用SSH登录。 值得注意的是,登录用户和密码默认都是root,如果忘记密码可以通过串口登录进系统,使用passwd修改。成功登录打印信息如下: 和使用串口登录一样。 2.3测试 2.3.1系统信息 1.硬件检测 # dmesg #检测硬件的boot启动信息,也就是系统启动的log信息。 2.查看内核和CPU信息 # uname -a #系统概述 # cat /proc/cpuinfo # CPU信息 3.查看内存信息 # cat /proc/meminfo #内存参数 # free -m # 内存使用情况(-m for MB) 4.设备信息 # cat /proc/devices # 显示设备以及对应的设备号 2.3.2 存储设备速度测试 1.DDR读写测试 OK3568-C的内存是使用镁光的D9WFH DDR4,读写速度测试命令如下: 读速度测试:# bw_mem 100M rd 写速度测试: # bw_mem 100M wr 读写速率分别为5257.07MB/s、1526.48MB/s。 读写速度还是可以的。 2.eMMC读写测试 OK3568-C使用闪迪的eMMC,读写速度测试命令如下: 读取测试: #time dd if=/test of=/dev/null bs=1M 写入测试: # time dd if=/dev/zero of=/test bs=1M count=500 conv=fsync 读写速率分别为1. 5G B/s、77.0MB/s。 3.TF卡测试 将 TF 卡插入开发板底板上的 TF 卡插槽,终端打印信息如下: 默认情况下 TF 卡挂载到文件系统 /run/media/目录 写入测试: # time dd if=/dev/zero of=/run/media/mmcblk1p1/test bs=1Mcount=500 conv=fsync 读取测试: # time dd if=/run/media/mmcblk1p1/test of=/dev/null bs=1M 读写速率分别为1.5GB/s、19.6MB/s,当然啦,不同品牌的TF卡速度会有差异。值得注意的是,先要进行写测试再进行读测试。 4.USB 2.0/USB3.0 OK3568支持两个USB2.0和一个USB3.0接口,用户可以在任何一个板载USB HOST接口上连接USB鼠标、 USB键盘、 U盘等设备。 下面先测试USB2.0的接口,插入U盘,打印信息如下: 首先查看U盘设备: # ls -l /run/media/ 写入测试: # time dd if=/dev/zero of=/run/media/sda/test bs=1Mcount=500 conv=fsync 读取测试: # time dd if=/run/media/sda/test of=/dev/null bs=1M 当然,不同种类的U盘也会影响读写速度。 下面测试USB3.0的接口,USB3.0和OTG复用,通过拨码开关切换使用,使用USB3.0接口时请确认拨码开关在ON位置,插入U盘后,打印信息如下: 首先查看U盘设备: # ls -l /run/media/ 写入测试: # time dd if=/dev/zero of=/run/media/sda/test bs=1Mcount=500 conv=fsync 读取测试: # time dd if=/run/media/sda/test of=/dev/null bs=1M 从上面的测试结果来看,USB3.0还是要比USB2.0快很多的。 2.3.3网络测试 OK3568-C开发板配备2个 千兆网 口,还有一个WiFi,网速测试方法都是一样的,笔者这是测试的千兆网口(ETH0)。 这里使用系统自带的Iperf工具测试TCP带宽。Iperf 是一个网络性能测试工具。Iperf可以测试TCP和UDP带宽质量。Iperf可以测量最大TCP带宽和UDP特性。 TCP测试: 服务器执行:#iperf -s -i 1 -w1M 客户端执行:#iperf -c host -i1 -w 1M 其中-w表示TCP window size,host需替换成服务器地址。 UDP测试 服务器执行:#iperf -u -s 客户端执行:#iperf -u -c10.32.0.254 -b 900M -i 1 -w 1M -t 60 下面以TCP为例进行测试,这里测试的是ETH0。先打开服务器:# iperf -s -i 1 -w 1M 然后使用SSH登录,新建一个终端,再次打开一个终端:# iperf -c 192.168.101.5 -i 1 速度还是可以的。 2.3.4串行总线测试 1.串口测试 OK3568平台支持多路串口,用户可用串口分别为UAR T3 和UART4、UART5,在开发板中对应设备名称分别为ttyS3、ttyS4、ttyS5。 在开始测试前可将串口的RT和TX短接,这里以UART3为例,也就是短接RX3和TX3。 # fltest_uarttest -d /dev/ttyS3 以上表明通信正常。 2.SPI测试 OK3568 底板上引出 2 路 SPI 接口,默认软件上将其配置为 spidev 用于回环测试。测试前需短接MOSI和MISO。这里以SPI2为例。 # fltest_spidev_test -D /dev/spidev2.0 以上表明通信正常。 2.3.5 WEB测试 OK3568开发板预装了lighttpdweb服务器,并且系统启动时已经自动启动了lighttpd服务,在浏览器中输入开发板的IP 地址即可浏览开发板webserver 中的网页。 界面和使用HDMI是一样的,操作也差不多,这里就不再赘述了。 想要了解更多功能及测试,请联系您的销售工程师或留言获取《OK3568-C_Linux用户使用手册》。 http://https://www.forlinx.com/product/146.html
  • 热度 1
    2022-6-28 14:52
    266 次阅读|
    0 个评论
    说到“洗车”,以前人们最先想到的应该就是汽车美容店人工洗车和自动洗车。 传统的人工洗车方式虽然省心,但也有着诸多的缺点,比如价格偏高、经常需要排队、耗时较长等等;而在加油站常见的自动洗车机虽然便捷,但也仅限于对车身表面的轻度清洗,而车身边角处和内饰部分则无法被有效地清洁。 相比之下,“自助洗车”有着独特的优势。作为一种相对较新的洗车方式,自助洗车的起价一般都在10元以内,价格更低;而且车主可以根据自己的实际需求自行清洁车辆,时间更灵活。因此各类自助洗车设备应运而生,越来越多的厂家开始入局自助洗车赛道, 自助洗车机 也开始有着愈加丰富的功能,变得更为智能。 那么智能自助洗车机应该具有哪些配置,并满足怎样的需求呢?小编通过对智能自助洗车机使用场景的分析,列举出了以下6点关键需求: 01、大屏显示,可双屏同显&异显 智能自助洗车机一般可以接两个屏幕,其中一个屏幕用于广告的播放、轮播通知重要信息;另一个屏幕是要显示洗车的相关信息,比如:时长选择、模式切换、剩余时间和金额等等。 02、Android& Linux 操作系统 虽然Android和Linux两种操作系统都可选择使用,但相较之下Android操作系统占优势比较多,考虑到移动终端主要还是使用Android手机操作系统居多,因此在洗车前用手机注册APP和付费都相对便捷一些。 03、4G&GPRS通讯方式 由于智能自助洗车机可能会放到户外,因此使用有线网络则会显得不方便,机身需要自带4G或GPRS网络,可自己连接网络,将用户的注册信息、付费记录等数据上传到云端。 04、摄像头(可用DVP&USB接口) 主要识别汽车车牌照,既可以来获取车辆的信息,也可以用来作为操作区域的视频监控。 05、串口/ GPIO 串口或GPIO用于连接冲洗设备和其他辅助设备,让汽车的清洁功能更加丰富,为用户带来更好的洗车体验。 06、工业级温宽(-40℃~+85℃) 智能自助洗车机的使用环境大多在室外宽阔区域或半开放的室内,并且全国各地都有安装,因此就必须考虑天气环境的多样性。考虑北方冬季恶劣的天气,使用工业级配置 方案 是更好的选择。 以上就是智能自助洗车机的硬件接口需求。 第一代智能自助洗车机最早使用的是STM32单片机方案,使用单色屏幕,产品功能比较单一,性能已经远远不能满足当今的用户需求 。 第二代智能自助洗车机使用x86方案,可以连接更大屏幕使得显示界面更多彩,而x86方案的市场价格往往过高,成本的控制不够理想。 而性价比更高,产品功耗更低,高性能的 ARM架构解决方案 已成为越来越多智能自助洗车机厂商的虚选择。 飞凌嵌入式 为此提供了基于 全志A40i处理器 的解决方案,大家可参考。 FETA40i -C 解决方案 FET A40i - C核心板 基于 全志工控 行业平台级处理器四核 Cortex - A7 A40i设计,主频1.2GHz,集成MAli 400MP2 GPU,内存1GB/2GB DDR3L,存储8GB eMMC。支持绝大部分当前流行的视频及图片格式解码,具有稳定可靠的工业级产品性能和高性价比低功耗等优势,并可搭载Linux和Android操作系统。 视频显示方面,支持双屏同显异显和多种 显示接口 ,RGB/MIPI/双8位LVDS/HDMI/TV OUT一应俱全,最高支持1920x1080@60fps视频输出; 网络连接 方面,支持1路 千兆网 络,1路百兆网络,支持WiFi/BT4.0,支持4G; 支持多路摄像头输入,两路DVP摄像头接口,最高支持500W像素,四路TVIN,支持NTSC与 PAL制式; CPU内部集成Audio Codec,支持1路差分Phone-Out,1路立体声耳机输出,1路Microphone输入; 外部扩展接口丰富UA RT *8、SD*4、USB*3、 SPI *4、IIC*5、SATA、PWM*8等; 飞凌嵌入式 FETA40i-C 核心板 现已提供扩展商业级和工业级两种规格,Pin对Pin兼容,并且价格相当优惠。 以上是小编针对智能自助洗车机需求展开的方案详解。 对于普通车主来说,智能自助洗车机有着随到随洗、24小时营业、价格实惠等优点;对于商家来说,智能自助洗车机又有着低价引流、收费便捷、高投产比的好处。 相信智能自助洗车机在未来会有更广阔的应用、具有更丰富的功能,成为我们身边不可缺少的一部分。 http://http://www.forlinx.com/product/58.html
  • 2022-6-13 14:20
    211 次阅读|
    0 个评论
    近年来,“ 工业互联网 ”在国家层面被反复提及,已连续5年写入政府工作报告。随着人工智能、 5G 、大数据和半导体等技术的不断发展和落地,工业智能化已成为“工业互联网”的新趋势。 智能网关 作为传统 工业网关 的迭代,依托人工智能所赋予的独特优势,将更好的驱动工业互联网的产业变革。 那么如何研发一款智能 网关 呢? 用户需求 国内某工业网关设备制造商计划推出一款轻量级AI智能网关产品,可应用于工业设备监控、工业现场 动环监控 、远程巡检等多种场景。在主控平台选型阶段,该用户主要面临高算力和功能接口丰富的叠加需求。其主控不但需要支持RS232、RS485、 C AN、PCIe、SATA等常规接口,还需支持高频、浮点运算,能够实现本地轻量级人工智能算法的运行,从而对工业现场数据进行本地分析和智能决策。 用户根据产品预研目标,提出以下具体需求: 支持PCIe3.0和SATA3.0,连接 硬盘 实现数据本地存储 高算力的CPU且支持NPU 支持摄像头,进行图像数据采集 支持多路RS232、RS485、DI、DO、CAN等常用工业接口,与现场设备通讯 支持WAN、LAN、4G、5G、WIFI等多种通讯方式或接口,便于组网和通讯 板卡的稳定性、可靠性和安全性,以应对工业现场的长时间稳定运行 解决方案 功能接口丰富 具备PCIe3.0、SATA3.0、CAN-FD、USB3.0等高速接口,2路千兆以太网和最多10路UA RT 接口,同时支持有线网络、4G/5G、双频WiFi等通讯方式,可满足常规工业网关的数据采集和通讯功能。 轻量级人工智能 2.0GHz的主频和1 TOPS算力的NPU,可实现本地轻量级人工智能,对所采集的工业设备运行数据进行本地智能分析并做出相应调控,从而提升工业设备的运行管理效率。 强大的图像处理能力 支持摄像头进行图像采集,并通过算法对图像进行分析和判断,达到人员识别、火情智能监测、远程巡检等功能。 作为智能网关的核心部件,FE T3 568-C工业级 核心板 经过了严苛的环境温度测试、压力测试、长期稳定性运行测试,确保其在复杂的工业环境现场稳定可靠运行,有效降低整机故障率,减少运维成本。 https://www.forlinx.com/product/146.html
  • 热度 6
    2021-9-1 14:42
    1212 次阅读|
    0 个评论
    USB Type-C接口市场
    从2015年开始,USBType-C接口开始初入江湖,如今越来越多的PC、笔记本电脑、平板电脑和智能手机均已经采用或者计划这种接口设计,随着欧盟要求统一接口的强制命令发布( 新法规逼迫 iPhone 使用 USB-C 标准接口 ),连苹果也不得不往TYPE C接口并入的时候,至此USB Type-C已经正式步入整合阶段,此背景下,我们曾经使用和信赖的众多接口将何去何从,今天我们一起看看如今这些主流接口应对Type-C布局和整合之路:Displayport,Thunderbolt,HDMI。 01 Displayport接口 2015年初VESA(视频电子标准协会)发布了DislayPort标准1.4版本,在USB Type-C和USB 3.1标准发布并且更广泛地应用后, DsiplayPort Alt Mode被集成到最新的USB Type-C上 ,成为了VESA和USB推广小组共同的目标,并于Type-C中集成8K视频传输功能. VESA简介 DP系列为主导的视频电子标准协会VESA(Video Electronics Standards Association, VESA)是一家自1989年创立以来,一直致力于制订并推广显示相关标准的非盈利国际组织,总部设立于加利福尼亚州的Milpitas;高清数字显示接口标DisplayPort赢得了AMD、Intel、NVIDIA、戴尔、惠普、联想、飞利浦、三星、AOC等业界巨头的支持, VESA作为一个全球性的行业联盟,目前已经拥有超过250家会员单位,VESA会员构成以芯片厂商为主,其次是显示器厂商,以及线缆、连接器厂商,使命是开发促进和支持所有厂商以及经过认证的互操作产品构成的生态体系,促进整个电子行业的发展. VESA组织成员 Displayport接口定义的简单讲解 DisplayPort接口已经逐渐取代VGA,成为个人电脑PC上的高清多媒体主要接口之一,也有部分的液晶电视和笔记本的内设接口采用是 DisplayPort接口,目前最新的是2019年6月26日VESA标准组织发布的DisplayPort 2.0数据传输标准规范,与雷电3、 USB-C紧密结合, 可满足8K乃至更高级别的显示,更多 DisplayPort接口 规范的资讯,可以查看其官方网站:https://vesa.org. 最新的 DP2.0物理接口已经统一为USB-C接口( DP2.0接口即将正式登场 ) ,但是其无论是什么形态,DP有20根引脚,这一点是不会变的; 接下来说一下DP的传输形式。 虽然说起来比较惊人,但实际上就是这样——Displayport是类似于PCI-E的,甚至可以说它就是PCI-E的视频改版。 因为只有这样才能解释为什么雷电接口可以在输出DP视频信号的同时传输数据; 当然,视频信号的传输和PCI-E这种传输的数据包和传输方式是不同的,所以就不要想用显卡上的DP口来当雷电用了,不可能的 ;接下来看标准DP接口在物理上的定义. 是不是感觉很眼熟?没错,基本上就是雷电接口的那些东西——4路高速差分信号(引脚1/3、4/6、7/9、10/12)1路低速差分信号(引脚15/17)、供电、热插拔检验、地线。接下来解释这些都是做什么的; 首先是4路高速差分信号;对于传输视频信号的DP而言,这4路信号都是单向的——从显卡到显示器,因为反过来传输这么高速的数据没用;当然,可以分出来一小部分带宽用于传输音频信号;至于那1路低速差分信号,也比较好理解——主要是显示器向显卡端传输的;至于传输什么,第一是显示器的型号、分辨率等信息,使电脑能够正确识别显示器(这个功能上古的VGA就有,所以目前最先进的DP不可能没有); 第二就是比较实用的摄像头、触屏回传功能,这样的话显示器上的摄像头或者触屏显示器就不用单独接线,直接用DP就可以了,省心省力。剩下的就不用解释了吧,通过字面就能理解。 总结:可以看出,DP 接口的诞生就是为了取代 HDMI 接口,除了是完全免费使用外,它还支持通过 USB-C 及 Thunderbolt 雷电接口同步传输数据及视频,这也意味着未来笔记本只需要一根线即可完成对显示器的视频输出,以及使用显示器上的 USB 扩展坞,虽然DP接口不仅在视频传输上比较先进,在接口设计上也比较先进,在保证足够的稳定性的前提下,利用20根线实现了4条高速、1条低速差分信号的传输,不仅带宽高,而且功能强,但是 由于它的使用范围相较于 HDMI 接口来说要小很多,目前来看还无法完全取代 HDMI 接口. 02 Thunderbolt 接口 2016年6月3日,Intel正式公布了Thunderbolt 3接口规范,该接口需要占用4条PCI-E 3.0通道,传输速率可达40Gbps,为了跟USB接口竞争,Intel主导研发了Thunderbolt接口,因为其高额的版权授权费用,让其并没有得到普及,只有苹果Mac电脑以及少数高端主板才支持该接口,而且相关外设的价格非常昂贵,Thunderbolt 3接口能支持双4K(4096×2160)60Hz显示器输出,且提供更强的供电能力,可给设备提供15W电力,如果是专门用来充电的话,最高能支持100W供电; 令人吃惊的是,Thunderbolt 3接口居然和USBType-C一模一样,而且兼容USB 3.1标准。这么做的好处相当明显,未来USB Type-C设备可直接插在Thunderbolt3接口上使用,这显然会带动Thunderbolt 3接口的发展;最新 Tiger Lake已经确认首发Thunderbolt 4(雷电/雷雳4),由于Thunderbolt 4的带宽保持在40Gbps,它和USB4某种程度上也算是一回事了. 基于Intel雷电4接口协议( 英特尔的“雷电4”让Type-C成为了目前最佳的快充接口标准 ),带宽40Gbps且 只有USB Type-C一种接口形态 ,同时支持100W功率供电,充分的带宽能让它支持菊花链承载外置独立显卡,或两台4K显示器/一台5K显示器. Thunderbolt 简介 ThunderboltI/O技术由Intel公司开发,每个接口配备两个10Gbps全双工数据路径链路,要比Firewire800接口快达12倍。Thunderbolt采用64b/66b数据编码格式,而Intel开发的接口控制器可将PCI–Express和DisplayPort复用成为一个单数据流。Intel公司开发的第一代控制器代号为Light Ridge,随后的第二代、第三代控制器代号分别是Cactus Ridge和Redwood Ridge,而新一代(第四代)控制器的代号是Falcon Ridge。 在主机设备中,控制器从I/O控制器集线器中获取PCI–Express数据,从I/O控制器中的负信号或如图1所示的外部图形控制器中获取DisplayPort数据。接下来,该组合信号通过全双工差分信号发出。一般情况下,每个控制器配备两个端口,可进行菊花链方式的连接。 Thunderbolt接口定义的简单讲解 前两代雷电使用的是mini DP接口,而雷电3开始其使用的是Type-C的物理接口,这个接口有20根引脚。 如图。其中Ground都是接地,一共8根,其中2根保留未使用。引脚2用于热插拔的检验,引脚3到6是一对双向串行差分信号,引脚15到18是另一对双向串行差分信号。所以雷电1是基于 PCI-E 2.0 X2的,利用两路PCI-E通道(也就是4路差分信号)进行传输,速度为双向各10GT/s,全双工。引脚9和11可能是USB2.0的差分信号(也就是“向下兼容USB”)。引脚20是正极供电。关于雷电2,官方给出的速度是20Gbps,基于PCI-E 2.0 X4,依然使用miniDP接口(接口定义不变,所以完全兼容)。然而根据接口定义,miniDP只能承载4路差分信号,也就是全双工下的两对(X2通道) 因为4条通道可以同时单向工作,所以速度可以达到PCI-E X4的单向速度,也就是20GT/s,但是这时是半双工的。在全双工下,单向速度还是10GT/s。接下来是雷电3。雷电3使用的是我们都非常熟悉的Type-C接口,Type-C接口在USB时的定义如下 但是雷电3是4路差分信号,所以在针脚定义上和USB3.1(2路差分信号)完全不同。具体如何定义的,很遗憾,我并没有查到资料。不过我们可以大体分析一下。Type-C有24根引脚,但是,因为它是双面可插的,所以只有一半的引脚是有效的,也就是图中圈上的那部分 所以,有12根引脚可用。这12根引脚,分配给4路差分信号,需要8根引脚。加上1根屏蔽地、1根地线、1根供电(正极),还剩一根保留(可能用于热插拔检测),是完全够用的。在协议上,全速雷电3使用了PCI-E3.0 X4,和雷电2一样分两种模式——全双工和半双工。半双工下,最高速度为32GT/s,因为使用了128b/130b编码,所以实际速度为3.938GB/s(查表就可以知道)。当然,全双工模式下速度减半。那我就很好奇——“40Gbps”的官方宣传速度到底是怎么来的?个人猜想,节操丢尽的英特尔又在忽悠人。3.938,四舍五入,就是4了嘛!然后按照老的8b/10b的编码方式(实际上编码方式换了),4*8*(10/8)=40G/s,嗯,没毛病。另外,雷电3存在半速版,使用的是PCI-E 3.0 X2,这次就只有全双工模式——也就是双向各“20G/s”(实际上是16GT/s), ,虽然名义上是半速的,实际上在全双工下速度和全速没有区别。注意:雷电3接口速度不能达到PCI-E 3.0 X4的全部速度(全双工,双向各32GT/s)的原因不是计算机内部分配的PCI-E通道数不足,而是雷电接口本身的针脚数不足,只能容纳4路差分信号(而PCI-E 3.0 X4是8路差分信号)。最后总结一下。雷电这东西,在原理上还是比较先进的,楞是用4条差分通道达到了PCI-E X4的单向速度,反正消费者们也不关注到底是全双工还是半双工。个人认为,这种设计对于PCI-E而言完全就是浪费。在速度已经达到“双向各20G/s”的雷电3时代,仅仅就是为了和USB3.1争一个高低,就把本来全双工的PCI-E X4变成半双工工作来解决线数不够的问题,这就是很严重的浪费了(的确,为了找出4个全速雷电3需要的20条PCI-E 3.0,2017版高端MBP把给独显用的16条和给PCH(可以理解为南桥)的4条全给了雷电,所以,连独立显卡都没有!这可真是“Macbook Pro”啊!独显都没有,除了价格,真没看出哪里对得起Pro这个词。 03 HDMI 接口 2002年4月,日立、松下、飞利浦、Silicon Image、索尼、汤姆逊、东芝七家公司共同组建了HDMI高清多媒体接口组织,开始着手制定一种符合高清时代标准的全新数字化视频/音频接口技术;经过半年多时间的准备工作,HDMI组织在2002年12月9日正式发布了HDMI 1.0版标准,标志着HDMI技术正式进入历史舞台;截止今天,HDMI己经走过了近20年的路,从最早的1.0到现在的2.1,从1080p,到现在的8K @60Hz,这是一个飞跃;HDMI接口、家庭视屏系统的霸主,开放握手协议,支持TYPE C TO HDMI协议,并更新最新的2.1版本; 自从HDMI Forum 正式推出了最新 HDMI 2.1 版早期规范,就宣告我们的8K数据时代来临 !( HDMI 2.0已淘汰;HDMI 2.1上位 ) HDMI 简介 HDMI,英文全称是High Definition Multimedia Interface,中文名称是高清晰多媒体接口的缩写。2002年4月,Hitachi(日立)、Panasonic(松下)、PHILIPS (飞利浦)、SONY(索尼)、THOMSON(汤姆逊)、TOSHIBA(东芝)和Silicon Image七家公司联合组成HDMI组织。HDMI能高品质地传输未经压缩的高清视频和多声道音频数据,最高数据传输速度为48Gbps。同时无需在信号传送前进行数/模或者模/数转换,可以保证最高质量的影音信号传送。HDMI1.3不仅可以满足目前最高画质1440P的分辨率,还能支持DVD Audio等最先进的数字音频格式,支持八声道96kHz或立体声192kHz数码音频传送,而且只用一条HDMI线连接,免除数字音频接线。同时HDMI标准所具备的额外空间可以应用在日后升级的音视频格式中。足以应付一个1080p的视频和一个8声道的音频信号。而因为一个1080p的视频和一个8声道的音频信号需求少于4GB/s,因此HDMI还有很大余量。这允许它可以用一个电缆分别连接DVD播放器,接收器和PRR。此外HDMI支持EDID、DDC2B,因此具有HDMI的设备具有“即插即用”的特点,信号源和显示设备之间会自动进行“协商”,自动选择最合适的视频/音频格式. HDMI 创始组织成员 HDMI 接口定义的简单讲解 HDMI接口主要有Type A、Type B、Type C、Type D、Type E五种类型。 1、HDMI A Type是使用最广泛的HDMI线缆,HDMI A接口共有19pin,宽度为13.9毫米,厚度为4.45毫米。在日常生活使用中的绝大部分影音设备都配备这个接口。比如:蓝光播放器、小米盒子、笔记本电脑、液晶电视、投影机等等。 2、HDMI B Type生活中比较少见,它主要用于专业级的场合。HDMI B接口采用29pin,宽度21毫米。HDMI B Type的数据传输能力比HDMI A type快近两倍,相当于DVI Dual-Link。由于多数影音设备工作频率均在165MHz以下,而HDMI B Type的工作频率在270MHZ以上,所以多见于专业应用场景,如WQXGA 25601600以上的分辨率。 3、HDMI C Type常称为Mini HDMI,它主要是为小型设备设计的。HDMI C Type同样采用19pin,但是宽度只有10.42毫米,厚度有2.4毫米。它主要应用在便携式设备上,比如数码相机、便携式播放机等设备。 4、HDMI D Type俗称Micro HDMI。HDMI D Type尺寸进一步缩小。同样为19pin,宽度只有6.4毫米,厚度2.8毫米,很像Mini USB接口。主要应用于小型的移动设备上面。比如:手机、平板电脑等。 5、HDMI E Type主要用于车载娱乐系统的音视频传输。由于车内环境的不稳定性,HDMI E Type在设计上具备抗震性、防潮、耐高强度、温差承受范围大等特性。在物理结构上,采用机械式锁定设计,能保证接触可靠性。 如上图,HDMI A TYPE共19针,其中1-9针为数据信号;10、11、12针为时钟信号;13针为CEC针;14针为空;15针SCL针;16针为SDA针;17针为地;18针+5V电源;19针为热插拔检测. HDMI A Type 应用于HDMI1.0版本,总共有19pin,规格为4.45mm×13.9mm,为最常见的HDMI接头规格,相点对点于DVI Single-Link传输。在HDMI 1.2a之前,最大能传输165MHz的TMDS,所以最大传输规格只能在于1600×1200(TMDS 162.0MHz) Pin Pin定义 1 TMDS Data2+ 2 TMDS Data2 Shield 3 TMDS Data2– 4 TMDS Data1+ 5 TMDS Data1 Shield 6 TMDS Data1– 7 TMDS Data0+ 8 TMDS Data0 Shield 9 TMDS Data0– 10 TMDS Clock+ 11 TMDS Clock Shield 12 TMDS Clock– 13 CEC 14 Reserved(N.C. on device) 15 SCL 16 SDA 17 DDC/CEC Ground 18 +5V Power 19 Hot Plug Detect HDMI B Type 应用于HDMI1.0版本,规格为4.45mm×21.2mm,总共有29pin,可传输HDMI A type两倍的TMDS数据量,相点对点于DVI Dual-Link传输,用于传输高分辨率(WQXGA 2560×1600以上)。因为HDMI A type只有Single-Link的TMDS传输,如果要传输成HDMI B type的信号,则必须要两倍的传输效率,会造成TMDS的Tx、Rx的工作频率必须提高至270MHz以上。而在HDMI 1.3 IC出现之前,市面上大部分的TMDS Tx、Rx只能稳定在165MHz以下工作。此类接口未应用在任何产品中 。 Pin Pin定义 1 TMDS Data2+ 2 TMDS Data2 Shield 3 TMDS Data2– 4 TMDS Data1+ 5 TMDS Data1 Shield 6 TMDS Data1– 7 TMDS Data0+ 8 TMDS Data0 Shield 9 TMDS Data0– 10 TMDS Clock+ 11 TMDS Clock Shield 12 TMDS Clock– 13 TMDS Data5+ 14 TMDS Data5 Shield 15 TMDS Data5- 16 TMDS Data4+ 17 TMDS Data4 Shield 18 TMDS Data4- 19 TMDS Data3+ 20 TMDS Data3 Shield 21 TMDS Data3- 22 CEC 23 Reserved(N.C. on device) 24 Reserved(N.C. on device) 25 SCL 26 SDA 27 DDC/CEC Ground 28 +5V Power 29 Hot Plug Detect HDMI C Type 俗称mini-HDMI,应用于HDMI1.3版本,总共有19pin,可以说是缩小版的HDMI A type,规格为2.42mm×10.42mm,但脚位定义有所改变。主要是用在便携式设备上,例如DV、数字相机、便携式多媒体播放机等。由于大小所限,一些显卡会使用mini-HDMI,用家须使用转接头转成标准大小的Type A再连接显示器. Pin Pin定义 1 TMDS Data2 Shield 2 TMDS Data2+ 3 TMDS Data2– 4 TMDS Data1 Shield 5 TMDS Data1+ 6 TMDS Data1– 7 TMDS Data0 Shield 8 TMDS Data0+ 9 TMDS Data0– 10 TMDS Clock Shield 11 TMDS Clock+ 12 TMDS Clock– 13 DDC/CEC Ground 14 CEC 15 SCL 16 SDA 17 Reserved(N.C. on device) 18 +5V Power 19 Hot Plug Detect HDMI D Type 应用于HDMI1.4版本,总共有19pin,规格为2.8mm×6.4mm,但脚位定义有所改变。新的Micro HDMI接口将比现在19针MINI HDMI版接口小50%左右,可为相机、手机等便携设备带来最高1080p的分辨率支持及最快5GB的传输速度。 Pin Pin定义 1 Hot Plug Detect 2 Utility 3 TMDS Data2+ 4 TMDS Data2 Shield 5 TMDS Data2- 6 TMDS Data1+ 7 TMDS Data1 Shield 8 TMDS Data1- 9 TMDS Data0+ 10 TMDS Data0 Shield 11 TMDS Data0- 12 TMDS Clock+ 13 TMDS Clock Shield 14 TMDS Clock- 15 CEC 16 DDC/CEC Ground 17 SCL 18 SDA 19 +5V Power 随着欧盟要求统一接口的强制命令发布,连苹果也不得不往TYPE C接口并入的时候,至此USB Type-C已经正式步入整合阶段,加上如今USB协会主动自废武功进行整合,仅此一家之举( Type C终将一统江湖,协会不再接受USB 3.x Micro-B, Micro-AB认证 ),预告USB的江湖只有一个存在,USB Type C接口时代快马加鞭而来,其它相关接口必须主动往USB Type C接口融合。 来源:公众号 TypeC情报中心
相关资源