tag 标签: WDM

相关帖子
相关博文
  • 热度 1
    2024-11-25 11:25
    338 次阅读|
    0 个评论
    高速光收发模块中WDM波分技术简介
    光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、DWDM)。波分复用技术可以实现单根光纤对多个波长信号的传输,这会成倍提升光纤的传输容量,已经被广泛应用在光通讯的中长距离传输和数据中心的互联中。 目前光模块的波分复用组件主要有两种实现技术:基于空间光学的TFF(薄膜滤波器Thin-Film Filters),基于PLC(集成平面光波导 Planar Light Circuit )的阵列波导光栅(Arrayed Waveguide Grating,AWG)、刻蚀衍射光栅(Echelle Diffraction Grating, EDG)、级联MZI阵列(Mach-Zehnder interferometer, MZI)等。其中TFF(基于Z-BLOCK)和AWG(阵列波导光栅)是两种最常用、最典型的MUX/DEMUX子组件。 TFF(Thin Film Filter)薄膜滤光片技术,在光模块里所用的TFF技术主要采用Z-block方法来实现。利用自由空间光学(Free Space Optics)设计,结合准直器,用4个CWDM波长的滤光片通过微光学的方式进行合波和分波。通过波分复用/解复用器,在一根光纤中传输1271nm、1291nm、1311nm、1331nm四个波长信号。 为了简化封装工艺,以减小尺寸和降低成本,人们开发了基于集成光学技术的CWDM4 AWG芯片。AWG(Arrayed Waveguide Grating)平面阵列波导光栅技术,基于CWDM4-AWG的芯片目前已经成熟且大规模应用于100Gbps CWDM4 QSFP28的产品中。 最早的CWDM4 AWG芯片,输入/输出端口位于两端,如下图所示。为了便于绕纤并集成于光纤收发模块中,人们开发了单侧输入/输出的CWDM4 AWG芯片,通过弯曲波导将输入端口绕至输出端,如图所示。这样的设计,也进一步简化了波导与光纤阵列之间的耦合工艺。当然,由于芯片宽度有限,波导弯曲半径小于1mm,会引入一定的弯曲损耗。 一个CWDM4光纤收发模块中,需要两个CWDM4 AWG芯片,一个用于光信号的复用发射,另一个用于光信号的解复用接收。发射端的CWDM4 AWG芯片目前主要采用图所示的单侧输入/输出结构,而在接收端,解复用的各个波长终将被光探测器检测,无需耦合到单模光纤中继续传输。为此,接收端CWDM4 AWG芯片通常采用图4所示的两侧输入/输出结构,输出端口采用多模光波导,并将输出端面抛光成45°斜面,实现光束的90度转折,入射在光探测器阵列上,后者被直接贴装在PCB板上。 Z-block和AWG均有各自的优缺点,Z-block技术具有损耗低和信道质量好的优点,基于Z-block技术的CWDM4模块,能支持100G或更高速率的信号传输10公里及以上。在应用趋势上,AWG多应用于传统光模块接收端,具备极佳的成本优势和封装优势。 目前这两种方案都有厂商在应用。 下面介绍一下TFF技术中的几个重要组件。 Z-block 波分复用/解复用组件是高速率光模块最为重要的部件之一,而Z-block是波分复用/解复用组件里面核心的器件。 如下图为Z-block的典型结构,中间是一个处理过的斜方棱镜(也是平行四边形玻璃基板),斜方棱镜的背面部分区域镀了高反射膜,另一侧贴有不同波长的WDM滤波片,每个滤光片只能让当前通道波长的光信号通过,并且反射其它通道的波长,也即选择一特定波长的光束通过。 从右侧4个准直器发射的光信号,分别透过对应的滤波片,经不同反射次数,到达左侧公共端的准直器,耦合到输出光纤中。这个过程就实现光路的MUX。例如,含有四个波长的准直光束从入射端依设计角度射入,1271通道直接透过滤波片1,从斜方棱镜增透膜区域输出;1291信号通过滤光片2后入射到棱镜上的反射膜区域,正好被反射到滤波片1上,滤波片1再次将它反射到棱镜上增透膜区域,并从增透膜区域输出;以此类推,1311/1331信号经过来回反射,也最终从block增透膜区域输出,整个光路在Block中呈现Z字型,也因此叫Z-block。 Z-block组件的波分解复用接收光路如下图所示,公共端光信号从左侧准直器输入,各信道的光信号经过不同反射次数,透过对应的滤波片,经微透镜聚焦在光探测器阵列上的对应单元。光探测器阵列贴装在PCB板上,如图(b)所示。在水平面内被波分解复用的光束,需经过一个直角棱镜实现90度转向,沿竖直方向入射在光探测器上。光探测器的有源区尺寸通常只有Φ50微米,Z-block中传输的准直光束直径远大于此,因此需要微透镜聚焦,并且微透镜需要在垂直光路的横截面内,上下左右调节,以将聚焦光斑对准光探测器的有源区。这个调节对焦过程,也增加了Z-block组装工艺的复杂度。 一束光能反射几次? 理论是无数,但是根据光的散射性,和物质对光的吸收性,一束光是有反射次数限制的,直到全部被散射或者吸收。目前,Z-block的通道数量更通用的是4通道,这主要是受到光学性能和装配成品率的约束,因为一束光在Z-block滤波片上反射次数一般不超过4次,通道数量越多,各光束之间的平行度就越差,光斑质量也会越差,影响耦合效率。 目前市场的800G更多是采用8×100G的方案,在800G的FR8、LR8等光模块中,应用比较多的还是Z-block技术方案。各家的800G方案各不同,有大概几种常见的类型: 准直器fiber collimators 光纤准直器,用于输入准直的信号光,将从光纤中的输出光转化成指定光束直径或光斑尺寸的自由空间准直光束,它们还可以反向使用,将光聚焦到光纤中。一般由光纤头、准直透镜和套管组成。当激光从波导发射出来通常是发散角很大的高斯光束,传播在自由空间中光斑很快地发散变大,不利于自由空间中各光学元件的集成,这时候就需要准直器。当光束离开准直器时,准直透镜可确保光束平行或聚焦。准直透镜可以是C-lens、Grin-lens、球透镜、非球面透镜等。 光隔离器 Isolator 光隔离器是一种只允许单向光通过的无源光器件,其工作原理是基于法拉第旋转的非互易性。 光隔离器是由法拉第磁光效应原理制成,当平面偏振光沿着磁场方向入射到非旋光材料时,光偏振面将旋转角度θ, 如果反射光再一次通过法拉第光偏振面将旋转角度2θ。简单地说,光隔离器只允许在同一个方向上的光通过,隔离掉光纤回波反射的光,从而保护激光器不受反射光的干扰。一般由三个部分组成,左右两边分别是输入和输出偏光片,中间是法拉第旋转器。 工作原理是:当光从第一个输入偏光片穿过时,发生垂直偏振,到达中间的旋转器,旋转器只会朝一个方向旋转45°,旋转后的光与放置在旋转器之后的偏光片的角度一致,因此光可以继续通过并输出。当反方向的光通过右边的偏光片进入到旋转器,又再同一个方向旋转45°,被旋转后的光到前面的偏光片,因为极化方向不同,没办法通过,因此被隔离掉,从而在相反方向上阻止光信号的传输。 在光收发器中,通过分立组件组装的方法实现波分复用解复用,包括光纤准直器、WDM滤光片、反射镜、透镜、隔离器等,组装效率较低。通过Z-block自由空间技术,可集成透镜、准直器、隔离器等组件,通过精准的光路设计优化,提高耦合效率。 HYC的这款集成光学组件主要是应用于400G/800G FR/ER/LR高速光收发模块,RX端集成了Receptacle, collimator, Z-block, lens array, isolator, prism等组件,只需一步简单耦合即可组装到光收发模块,极大地简化了光模块的组装和耦合。产品的核心技术在于通过光学模拟仿真,整合精密光学耦合组装和测试以及光学元器件冷加工能力,设计最佳耦合组件,保证快速耦合及最佳插入损耗。HYC可在客户产品开发从Design-in阶段参与联合开发,提供产品设计全光路模拟仿真,Z-block面型尺寸控制,基于客户侧设计不同高斯光束分布情况分析,汇聚光束质量和位置公差分析,到精密光学耦合组装和测试,可靠性管控的定制化服务。
  • 热度 7
    2023-6-28 15:54
    723 次阅读|
    0 个评论
    CWDM粗波分复用和DWDM密集波分复用的区别?
    WDM波分复用技术提供了一种经济高效的解决方案,无需在现有光纤网络中部署额外的光纤即可增加网络容量。 CWDM 和 DWDM 是两种主要的 WDM 技术,具有不同的波长模式、功能、成本和应用。 CWDM 代表粗波分复用,其中“Coarse” 是指通道之间的波长间隔。 CWDM 具有更宽的 20nm 通道间隔,根据ITU的标准,将CWDM划分为 18 个不同的波长通道,从 1270 nm到 1610 nm,而常用的为从 1470 nm 到 1610 nm 的八个波长。 ITU细化了CWDM的波长为1471、1491、1511等,虽然行业通常称为1470、1490、1510等。其波段涵盖单模光纤的O、E、S、C、L五个频段。1310nm和1550nm是两个最常见的两个波长,1550nm更受欢迎,因为它在光纤中的损耗较低。 20nm的波长间隔使 CWDM 能够通过一对光纤传输和接收多达 18 个通道。 更大的波长间隔也意味着复用器和解复用器的结构可大大简化,滤光片的镀膜层数减少,提升了良率并降低了成本。 DWDM 是密集波分复用,其波长位于 C 波段的1525nm 至 1565nm 区域内,并扩展到 1570-1610nm的 L 波段。 DWDM 的波长间隔为 0.4nm(50GHz)、0.8nm(100GHz) 或 1.6nm(200GHz)。 由于其波长间隔比较窄,DWDM 可承载 40、80、96 或多达 160 个波长。 CWDM VS DWDM CWDM 通常用于成本较低和较短距离的应用,其中成本是一个重要因素。 由于 CWDM 具有20nm 通道间隔,因此它通常部署在长达 80km 或更短的光纤跨度上,因为光放大器不能与大间隔通道一起使用。 DWDM 的间隔为 0.8nm,可以通过单根光纤传输大量数据,因为它们允许将更多波长封装到同一光纤上。 与 CWDM 不同,在EDFA光放大器的帮助下,DWDM系统可以在数千公里的范围内工作。 CWDM因波长间隔较宽且有源光模块的成本较低,一般应用于中距、长距等市级场景,如MAN(Metropolitan Area Network,城域网)、接入拉远网络(接入基站,如5G)等。因为CWDM成本较低,也广泛应用于其他局域网,包括校园、银行、企业等。DWDM分为AWG与TFF两种技术,因波长密度高且集中在C/L-BAND,一般应用于长距、超长距信号传输场景,如DCI(Data Center Interconnect,数据中心互联)、DC-CN(Core Network,核心网),长距离、大容量的长途干线网络,或超大容量的城域网核心节点 。
  • 热度 9
    2023-6-14 11:38
    1922 次阅读|
    0 个评论
    WDM波分复用技术:TFF(薄膜滤波) & AWG(阵列波导光栅)介绍
    WDM (Wavelength Division Multiplexing)技术是通过在光纤中传输多个不同波长的光信号来扩大光纤传输带宽并提高网络传输能力的一种技术,而TFF(薄膜滤波)和AWG(阵列波导光栅)则是两种常用的WDM技术。 1. TFF技术 TFF (Thin-film filter)技术是一种常用的WDM器件技术之一,也被称为薄膜滤波技术。它利用特殊的薄膜材料的一些光学特性来实现对不同波长的光信号进行分离或复用。薄膜滤波器通常由多个不同厚度的膜层构成,在这些膜层的分布中有一定的规律和特定的反射率,这样可以让特定的波长在薄膜中反射,而其他波长则透过这些膜层,实现了对信号的分离和复用。TFF技术的优点是结构简单、体积小、成本低、可靠性高等。 多层介质膜滤波片是一种多层高反射膜,膜层数目可多达几十层至上百层,交替由较高折射率和较低折射率的两种电介质材料组成,与滤波片基底和空气相邻的膜层具有较高折射率。将几十层不同的介质薄膜组合起来,组成具有特定波长选择特性的干涉滤波器,就可以实现将不同波长分离或合并的效果。 TFF滤光片用于WDM器件中,下图所示为三端口WDM器件的结构,包括一个双光纤准直器、一个单光纤准直器和一个TFF滤光片,TFF滤光片粘贴在双光纤准直器的准直透镜的端面上。WDM信号包括波长λ1, λ2,…λn,从公共端输入,TFF滤光片让一个波长λn透射,其他波长则被反射,因此波长λn从透射段输出,而其他波长从反射端输出。 为了将所有波长解复用,需要将n个三端口器件串联起来,组成WDM模块,如图所示,其中每个三端口器件中的TFF滤光片,其透射波长不同。WDM模块可用作解复用器或者复用器,取决于信号的传输方向。 基于三端口WDM器件的WDM模块,其尺寸相对较大(典型8信道WDM模块的尺寸为130×90×13mm3),在一些特殊应用领域,这个尺寸不符合要求。为满足这些要求,人们开发了紧凑型WDM模块,如紧凑型DWDM(CDWDM)和CWDM模块(CCWDM)。所有TFF滤光片固定在一块玻璃基片上,然后逐个对准和固定输入/输出准直器。紧凑型WDM模块的典型尺寸为50×30×6mm3,比常规WDM模块的尺寸小得多。 紧凑型WDM采用自由空间级联方式,原理是用输入透镜将输入光纤上的波长分别为λ1, λ2…λn的光信号聚焦到第一个滤波片上;波长为λ1的光信号通过第一个滤波片并经第一个输出透镜耦合到第一个输出光纤中,分离出波长为λ1的光信号;其余光信号经第一个玻片反射到下一个玻片进行光信号分离;依此类推,直到分离出所有信号。波长信道之间的耦合通过走“之”字路线的淮直光线的形式实现。 2. AWG技术 随着端口数增加,TFF型DWDM模块的损耗均匀性劣化。同时,在最后端口产生的最大损耗是制约端口数量的另一个因素。因此,基于TFF技术的DWDM模块,其信道数通常不超过16。然而,一个典型的DWDM系统,通常在单根光纤中传输40或者48个波长,因此需要更大端口数的复用/解复用器。串联结构的WDM模块会在后面端口累积太多功率损耗,因此需要采用并行结构,一次性对数十个波长进行复用/解复用操作。阵列波导光栅AWG就是这样一种光器件。 AWG (Arrayed Waveguide Grating)技术也是一种常用的WDM器件技术,它是在光波导的基础上通过光纤上的平面波前分束器,是利用PLC技术在芯片衬底上制作的阵列波导光栅,将不同波长的光信号进行复用和分离的技术。AWG通常由一排平行的波导构成,在光波导的分布上有特定的规律和晶格,每个通道的波长都会被某个特定的波导引导出去,这样就可以实现对信号的复用和分离。相比TFF技术,AWG技术的波长隔离度、通道数量和带宽都更高,可以用于更高速率的光通信系统。 典型的AWG结构如图所示,它包括一个输入波导、一个输入星形耦合器(图中自由传输区域FPR)、一组阵列波导、一个输出星形耦合器和数十根输出波导。 信号从输入波导进入输入星形耦合器,经自由传输之后,被分配到阵列波导之中。这个分配过程是波长无关的,所有波长被无差别的分配到阵列波导之中。阵列波导对多光束产生相位差,各光束的相位成等差级数,这与传统光栅中的情况类似。不同波长被色散展开,并聚焦在输出星形耦合器中的不同位置。不同波长被不同的波导接收,从而实现对DWDM信号的并行解复用。 这两种WDM技术都在当今光通信系统中得到了广泛的应用,一般认为,AWG在长距离、高信道容量DWDM应用中性价比更高,而TFF在低信道容量的CWDM城域应用中更为理想。TFF通常由多个不同厚度的膜层构成,最核心的和最贵的也就是薄膜,如需要得到大通道的器件,则需要增加薄膜数量,因此TFF的价格就随着信道数量的增加而增加。采用AWG,可以同时得到40个信道,但有个缺点是你不能只选择其中的一个或者两个信道,这意味着10信道的上下路和40信道的上下路的成本是一样的。因此说,在信道数较多的场合AWG比TFF更经济。 很多资料都将16个信道看作两种技术的转换点,低于16信道的应用适合采用TFF技术,而高于16信道的应用适合采用AWG技术。
  • 热度 14
    2023-6-2 11:11
    873 次阅读|
    0 个评论
    WDM波分复用器件的结构组成介绍
    目前已知WDM波分复用技术有很多种,如:FBT (熔融拉锥,Fused Biconical Taper)、FBG(光纤布拉格光栅,Fiber Bragg Grating)、TFF (薄膜滤波, Thin Film Filter)、AWG (阵列波导光栅, Arrayed Waveguide Grating)、EDG (刻蚀衍射光栅,Etched Diffraction Grating)、MZI (马赫-曾德干涉,Mach-Zehnder Interferometers)、MRR (微环谐振器型, Micro Ring Resonator)。其中TFF和AWG是最常用的两种WDM技术。本文介绍一下TFF型WDM器件的结构组成。 三端口WDM器件的结构,包括一个双光纤准直器、一个单光纤准直器和一个TFF滤光片。 TFF介质薄膜滤波片 (膜片), 是整个WDM器件最核心元件,成本最高。TFF滤光片粘贴在双光纤准直器的准直透镜的端面上,主要功能是进行透射与反射。 普通膜片尺寸如图所示,也有特殊尺寸的。有滤波面(反射面)和增透面(透射面),滤波面的主要功能是让某种颜色的光(即对应某种波长的光)通过,让其他颜色的光反射;增透面的主要功能是让光通过膜片。一般来说,颜色较深的是反射面,颜色较浅的是透射面。 多层介质膜滤波片是一种多层高反射膜,膜层数目可多达几十层至上百层,交替由较高折射率和较低折射率的两种电介质材料组成,与滤波片基底和空气相邻的膜层具有较高折射率。将几十层不同的介质薄膜组合起来,组成具有特定波长选择特性的干涉滤波器,就可以实现将不同波长分离或合并的效果。 从光纤端发出来的光是发散的,导致不能传远!怎么办? 因此,需要用到准直器,将原本发散的光聚成一束光斑较大的平行光束,从而达到准直(平行)效果,保证相对长的传输距离。准直器是利用透镜( C-Lens或者G-Lens)的汇聚原理。 什么东西能够使发散的光线平行传输,使平行传输的光线会聚?那就是透镜。透镜是对光束进行变换的关键部位,使用较多的是定折射率透镜(C-lens),也就是球面透镜(conventional lens),和自聚焦透镜(G-lens),又称梯析透镜(Gradient-index,GRIN)。C-lens和G-lens都具有聚焦和成像功能。两个透镜的作用是不同的,第一个透镜将发散的光线平行,第二个透镜将平行的光线汇聚。 从外观上来看,C-lens的端面一端为球面,而G-lens的一端为平面,正是因为这个原因,G-lens准直器可以将某些光学器件直接粘接在该平面上,从而使得模块可以更紧凑,这是C-lens不具备的特点。在WDM器件中输入端使用G-lens其中一个原因主要是因为它的耦合面是平的,方便滤波片的粘接。 GRIN lens的准直特性中,一个很重要的参数是节距。如下图所示,如果让一束平行光线入射进GRIN lens,其传播轨迹是遵循周期函数的模式,GRIN lens的厚度刚好为一个周期时,出射光线也讲是一组平行光线。在光纤通信中,通常使用的是1/4节距的G-lens。 将C-透镜装在光纤头的前面,外面用玻璃或金属套管封装,就做成了一个C-透镜准直器。光纤准直器由尾纤与透镜精确定位而成,利用透镜( C-Lens或者G-Lens)的汇聚原理使原本发散的光聚成一束光斑较大的平行光束,从而达到准直(平行)效果。一般G-透镜准直器的成本要比C-透镜准直器高,所以我们大多使用C-透镜准直器。 TFF WDM器件中,输入端双光纤准直器一般采用G-lens透镜准直器,输出端单光纤准直器采用C-lens透镜准直器。 不管封装形式如何,基于Filter的WDM器件的基本光路都是如下图所示。WDM信号包括波长λ1, λ2,…λn,从公共端输入,TFF滤光片让一个波长λn透射,其他波长则被反射,因此波长λn从透射段输出,而其他波长从反射端输出。其中,一路输入的光信号被分成两路不同的光信号输出,即为分波;两路输入的光信号被合成一路混合的光信号输出,为合波。 为了将所有波长解复用,需要将n个三端口器件串联起来,组成WDM模块,如图所示,其中每个三端口器件中的TFF滤光片,其透射波长不同。WDM模块可用作解复用器或者复用器,取决于信号的传输方向。
  • 热度 10
    2023-4-26 14:22
    996 次阅读|
    0 个评论
    什么是OADM光分插复用器
    文章导读: 什么是OADM光分插复用器 光分插复用器的功能 光分插复用器的类型(FOADM, TOADM) OADM的应用 1、什么是OADM光分插复用器 由不同的光通道进出单模光纤。 它的主要功能是在不影响其他波长信道传输的情况下,选择性地下载或上传一个或多个波长信道。 OADM设备是全光网络的关键设备之一。 “上路(Add)”是指设备向现有多波长 WDM 信号添加一个或多个新波长通道的能力,而“下路(Drop)”是指下载或移除一个或多个通道通往本地信号,将这些信号传递到另一网络路径,并且不影响现有其他波长信道按原有路线传输。 2、光分插复用器的功能 传统的 OADM 由光复用器、光解复用器和介于它们之间的一种重构方法,即在光解复用器、光复用器和一系列进展信号分插的端口之间进展路径重构的方法。 上下路分插单元是OADM的核心实现功能,能够从传输的多个波长中选择性的上下路某个波长信号,或仅仅通过某个波长信号,但不影响其他波长信道的传输。MUX将波长通道进展复用后传输至一根输出光纤,而DEMUX在输入光纤上将波长进展别离后传输至端口。这一重构过程可通过光纤跳线或光开关实现。 OADM具体的工作过程如下:从线路来的WDM信号输入包含λ1到λ4四个波长信道,其中根据业务需求,有选择地下载(Drop)λ2(B)和λ4(D)波长信道到本地,相应地上路(Add)本地的不同λ2(E)和λ4(F)波长信道,和其它与本地无关的波长信道复用在一起后,从OADM的线路输出端输出。 3、光分插复用器的类型(FOADM, TOADM) 根据可实现上下波长的灵活性,OADM可分为固定波长OADM(FOADM)和可重构OADM(ROADM)。FOADM通常用于固定的通信网络,其波长通道预设置好,无法更改。TOADM则较为灵活,其波长通道可以调整至任何波长,适应性较强。 FOADM (Fixed Optical Add-Drop Multiplexer, 固定光分插复用器)只能上路和下路固定波长的信道,相对于ROADM而言,不能动态地随意调整设定。 图为FOADM的简单示意图。 首先,demux将所有波长分离,将指定的波长下路分到本地节点,其余波长通过节点。 同时上路添加另一个本地指定波长,以及通过 Mux 驱动到下一个节点的其他波长。FOADM就是你不能临时改变上/下路波长,因为它都是固定设置好的。 常见的FOADM可分为薄膜滤光片型(TFF型)、光纤布拉格光栅(FBG型)和集成平面阵列波导光栅(AWG型)三种。 从频段上,FOADM可分为DWDM OADM和CWDM OADM。 ROADM(Reconfigurable Optical Add-Drop Multiplexer,可重构光分插复用器)是一种使用在密集波分复用(DWDM)系统中的器件或设备,其作用是通过远程的重新配置,可以动态上路或下路业务波长。也就是说,在线路中间,可以根据需要任意指配上下业务的波长,实现业务的灵活调度。通常选择WSS(光波长选择开关)来实现分插复用任意的单波或多波信号。 为了实现无阻塞的波长交换和上/下载,新一代ROADM节点要求具有无色、无方向性和无竞争(Colorless, Directionless and Contention-less)的特点,这就是CDC-ROADM。CDC-ROADM的优势在于可以在任意端口上传下载任意频段,同时解决了同一个频段不能放在同一条路径上的问题,大大降低了故障恢复的难度效率。ROADM节点通常由波长选择开关(WSS)和其他模块组成,CDC(无色、无方向性和无竞争)功能取决于ROADM节点的结构,而灵活带宽功能则取决于其中的关键模块WSS。与固定光分插复用器不同,ROADM 允许在线重新配置且不影响流量。 基于成本考虑,现有的城域网主要是基于CWDM和FOADM(固定光分叉复用器)技术,为了升级网络,之前应用于骨干网中的DWDM和ROADM(可重构光分叉复用器)技术,有望下沉至城域网。 4、OADM的应用 城域网MAN 由于OADM的灵活性,主要应用于MAN(城域网),其组网灵活、易于网络升级和扩大规模,是城域网应用理想的多业务传输平台。在DWDM城域网结构中,OADM(光分插复用器)是最关键的部件,需使用大量的OADM,它的作用是在DWDM环路中灵活地添加分离波长。 光交叉连接OXC OADM是全光网的关键的产品,它无需光电转换,不受电子瓶颈影响,可透明传输数据,组网灵活可靠。 随着人们对信息的不断需求以及信息技术的飞速发展,网络通讯成为了不可或缺的一部分,而OADM(Optical Add-Drop Multiplexer)作为光纤通讯系统中的一种核心设备,为网络通讯提供了重要的支持。
相关资源