tag 标签: 2023版

相关资源
  • 所需E币: 0
    时间: 2024-2-20 14:51
    大小: 2.59KB
    一、《flink实时规则营销系统》项目背景传统的“精准营销平台”由营销人员基于画像标签数据去圈选人群,进行营销推送,存在不足;这种传统手段,往往无法抓住那些“转瞬即逝的营销机会”;如:一个促销狂热型用户,正在浏览包包时,及时推送出正在做促销活动的包包信息,是最有效的;如:一个价格敏感型用户,正在犹豫不决反复查看他购物车中的某目标商品时,适时推送优惠券,是最有效的;这些场景,显然无法通过营销人员通过人工手段去发现,需要用软件系统自动、实时监控用户的行为,并实时做出判断,并进而驱动营销消息推送系统推送相关营销内容;总之,在应对这一类的需求时,以前的传统的“基于用户画像标签库的精准营销平台”显得力不从心;因而,擅长用键鼠改变世界的攻城狮们,决定为公司的推广、运营部门开发一个应对上述场景的自动化、智能的、实时、规则动态可变的营销利器——《实时动态规则智能运营系统》二、需求分析2.1营销规则举例-搜索兴趣词包含“商务休闲”的用户,如果浏览包含“商务休闲”的商品页面,则触发一个优惠券推送消息;-活跃度等级为C的用户,且在规则发布前的3天内,发生过“搜索雀巢”AND“加购”,当他再次上线时,触发一个app弹窗消息;-活跃度等级为C的用户,规则发布前2天内,发生过A事件3次以上,规则上线后发生了B事件,且之后间隔1天再次发生B事件,则触发;-规则运行时,检测到用户发生了下单事件,而在随后的15分钟内没有支付,则触发;-规则运行时,一个用户如果搜索的关键词符合某正则表达式,则触发;-宝妈用户,在2022-08-07开始,做过A行为3+次,做过(B行为,E行为)序列2+次,则触发;2.2规则营销需求的宏观抽象-营销规则有多样化的灵活的定义(不光参数可以支持自定义,且运算模型也可以自定义);-营销规则通常针对满足某画像的人群,也可没有针对性-营销规则通常都有有效期(也有可能是无限期的),要求系统能够支持动态增加、停用运营计划(规则)-营销规则根据需求的变化,需要能够方便地进行在线管理,如新增、停用、修改三、行为判断的逻辑分析1)行为判断:行为事件的类型及属性的判断判断用户的某个行为事件,是否是规则条件中要求的事件-简单的,可能就是 event_id="X"   ANDproperties["p1"]=/>/!=/<"v1"-稍微复杂的,可能就是  event_id="X"   AND  properties["p1"] 包含"kw1"-再复杂点的,可能就是  event_id="X"   AND properties["p1"] +properties["p2"]>100   ANDproperties["p3"]满足正则表达式 [1,10]*?a2)行为序列的判断判断用户的一系列行为事件中,是否满足规则条件所要求的依次发生的序列,比如A  B  E行为序列判断,是上述“行为判断”的衍生本质上,就是在判断事件的基础上,加上时间先后的序列关系这个逻辑,可以用正则匹配进行计算(全窗口运算); 也可以用滚动聚合的方式计算;3)事件(序列)发生次数的判断判断要求的事件或事件序列,发生了多少次是上述“行为判断”、“行为序列判断”的衍生本质上,就是在判断事件(或序列)的基础上,进行次数累计四、画像条件判断的实现难点初略考虑,应该就是查询用户画像标签库即可;站在系统的角度来考虑时:什么时机去查询? 去哪里查?比如: 查询时机: 当一个人的某个行为触发了某个规则,此时去查询该用户的画像标签是否满足规则的人群画像条件查询的目标: 用户画像标签数据库如果画像数据库在hbase中,可以用如下伪代码来快速判断##如果条件是:活跃等级=C  AND   首单时间<"2022-06-01"get=newGet(guid)get.addColumn("活跃等级")get.addColumn("首单时间")result=table.get(Get)activeLevel=result.getValue("活跃等级")firstOrderDate=result.getValue("首单时间")if(activeLevel='C' && firstOrderDate<"2022-06-01") returntrue;##如果条件是:兴趣词:包含"速溶咖啡"##这种条件,用hbase的支撑就不太好处理了//favroitWords:[海底捞,咖啡伴侣,小罐速溶咖啡,乔丹,篮球]favroitWords=result.getValue("兴趣词")  
  • 所需E币: 0
    时间: 2024-2-20 10:28
    大小: 3.01KB
    上传者: 开心就很好了
    flink实时规则营销系统(39期,2023版)——简单来说,本系统核心是一个基于事件驱动且可进行动态规则计算的实时系统,在技术上它是通用的;本套架构及系统内核,不仅可以用于“实时运营”,也可以用于“实时风控”,“实时推荐”,“实时交通监控”等场景。运营场景举例:下单促付款,新品发布信息精准送达。本系统,在核心规则引擎之外,也集成了大量metric及跟踪数据输出,能在系统中及系统外进行多维度数据分析,以深度掌握各类市场运营活动的效果,以及系统运行的各类状态什么是flink?flink是一个分布式,高性能,随时可用的以及准确的流处理计算框架,flink可以对无界数据(流处理)和有界数据(批处理)进行有状态计算(flink天生支持状态计算)的分布式,高性能的计算框架。flink的基石flink的四大基石:checkpoint,state,time,windowcheckpoint:基于chandy-lamport算法实现分布式计算任务的一致性语义;state:flink中的状态机制,flink天生支持state,state可以认为程序的中间计算结果或者是历史计算结果;time:flink中支持基于事件时间和处理时间进行计算,sparkstreaming只能按照processtime进行处理;基于事件时间的计算我们可以解决数据迟到和乱序等问题。window:flink提供了更多丰富的window,基于时间,基于数量,sessionwindow,同样支持滚动和滑动窗口的计算。Flink的应用Flink是一个大数据流处理引擎,它可以为不同的行业提供大数据实时处理的解决方案。随着Flink的快速发展完善,如今在世界范围许多公司都可以见到Flink的身影。目前在全球范围内,北美、欧洲和金砖国家均是Flink的应用热门区域。当然,这些地区其实也就是IT、互联网行业较发达的地区。Flink在国内热度尤其高,一方面是因为阿里的贡献和带头效应,另一方面也跟中国的应用场景密切相关。中国的人口规模与互联网使用普及程度,决定了对大数据处理的速度要求越来越高,也迫使中国的互联网企业去追逐更高的数据处理效率。试想在中国,一个网站可能要面对数亿的日活用户、每秒数亿次的计算峰值,这对很多国外的公司来说是无法想象的。而Flink恰好给我们高速准确的处理海量流式数据提供了可能。Flink环境部署:要了解一个系统,一般都是从架构开始。我们关心的问题是:系统部署成功后各个节点都启动了哪些服务,各个服务之间又是怎么交互和协调的。当Flink集群启动后,首先会启动一个JobManger和一个或多个的TaskManager。由Client提交任务给JobManager,JobManager再调度任务到各个TaskManager去执行,然后TaskManager将心跳和统计信息汇报给JobManager。TaskManager之间以流的形式进行数据的传输。上述三者均为独立的JVM进程。Client为提交Job的客户端,可以是运行在任何机器上(与JobManager环境连通即可)。提交Job后,Client可以结束进程(Streaming的任务),也可以不结束并等待结果返回。JobManager主要负责调度Job并协调Task做checkpoint,职责上很像Storm的Nimbus。从Client处接收到Job和JAR包等资源后,会生成优化后的执行计划,并以Task的单元调度到各个TaskManager去执行。TaskManager在启动的时候就设置好了槽位数(Slot),每个slot能启动一个Task,Task为线程。从JobManager处接收需要部署的Task,部署启动后,与自己的上游建立Netty连接,接收数据并处理。本地模式环境部署步骤如下:#1.下载安装包并上传到/usr/local/src目录#2.解压安装包并重命名为flink[root@nodesrc]$tar-zxfflink-1.14.4-bin-scala_2.12.tgz[root@nodesrc]$tar-zxfjdk-8u111-linux-x64.tar.gz#3.修改安装包所属用户和用户组权限[root@nodesrc]$chown-Rroot.rootflink-1.14.5#4.配置Flink环境变量并重新加载使其生效[root@nodesrc]$vim~/.bash_profileexportJAVA_HOME=/usr/local/src/jdk1.8.0_111/exportFLINK_HOME=/usr/local/src/flink-1.14.5/exportPATH=$PATH:$JAVA_HOME/bin:$FLINK_HOME/bin[root@nodesrc]$source~/.bash_profile#4.启动"集群"[root@nodesrc]$start-cluster.shStartingcluster.Startingstandalonesessiondaemononhostnode.Startingtaskexecutordaemononhostnode.[root@nodesrc]$jps17186Jps17078TaskManagerRunner16809StandaloneSessionClusterEntrypoint#5.访问WebUI界面8081端口查看运行情况分发Flink安装包配置到另外两个节点使用Linuxscp命令把node01节点的配置分发到另外两个节点上。#使用scp分发[root@node01conf]$cd/usr/local[root@node01local]$scp-rflinknode02:/usr/local/[root@node01local]$scp-rflinknode03:/usr/local/启动Flink集群#批量统一启动[root@node01bin]$start-cluster.shStartingcluster.Startingstandalonesessiondaemononhostnode01.Startingtaskexecutordaemononhostnode01.Startingtaskexecutordaemononhostnode02.Startingtaskexecutordaemononhostnode03. #单独启动[root@node01bin]$ jobmanager.shstart/stop[root@node01bin]$ taskmanager.shstart/stop #使用脚本查看服务进程[root@node01bin]$jps
  • 所需E币: 0
    时间: 2023-10-19 09:00
    大小: 2.09KB
    上传者: huangyasir1990
    大数据工程师2023版体系课,10月升级版35周,源码+PDF课件+电子手册+软件下载地址+接口数据集下载!大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。简单来说,大数据就是结构化的传统数据再加上非结构化的新数据。大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。随着大数据时代的来临,大数据分析也应运而生。大数据包含哪些技术:Zookeeper是一个分布式的、开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么和这个地方配置相同的所有地方都可以获得变更,省去了手动拷贝配置的繁琐,还很好地保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与Hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQLonHadoop,用来进行大数据实时查询分析。通常来说,在我们最终查看数据报表,或者使用数据进行算法预测之前,数据都会经历以下这么几个处理环节:数据采集:是指将应用程序产生的数据和日志等同步到大数据系统中。数据存储:海量的数据,需要存储在系统中,方便下次使用时进行查询。数据处理:原始数据需要经过层层过滤、拼接、转换才能最终应用,数据处理就是这些过程的统称。一般来说,有两种类型的数据处理,一种是离线的批量处理,另一种是实时在线分析。数据应用:经过处理的数据可以对外提供服务,比如生成可视化的报表、作为互动式分析的素材、提供给推荐系统训练模型等等。计算机要对输入的单词进行计数:如果采用集中式计算方式,我们要先算出一个单词如Deer出现了多少次,再算另一个单词出现了多少次,直到所有单词统计完毕,将浪费大量的时间和资源。如果采用分布式计算方式,计算将变得高效。我们将数据随机分配给三个节点,由节点去分别统计各自处理的数据中单词出现的次数,再将相同的单词进行聚合,输出最后的结果。
  • 所需E币: 0
    时间: 2023-10-19 10:35
    大小: 3.21KB
    上传者: 开心就很好了
    MK体系课-大数据工程师2023版(35周)分享下载,源码+PDF课件+电子手册+软件下载地址+接口数据集,资料齐全下载!想要学好大数据需掌握以下技术:1.Java编程技术2.Linux命令3.Hadoop4.Hive5.Avro与Protobuf6.ZooKeeper7.HBase8.phoenix9.Redis10.Flume11.SSM12.Kafka13.Scala14.Spark15.Azkaban16.flink下面我们就来学习一下HDFS中的一些常见的shell操作其实hdfs后面支持很多的参数,但是有很多是很少用的,在这里我们把一些常用的带着大家一块学习一下,如果大家后期有一些特殊的需求,可以试着来看一下hdfs的帮助文档直接在命令行中输入hdfsdfs,可以查看dfs后面可以跟的所有参数注意:这里面的[]表示是可选项,<>表示是必填项首先看第一个ls命令查看hdfs根目录下的内容,什么都不显示,因为默认情况下hdfs中什么都没有其实后面hdfs的url这一串内容在使用时默认是可以省略的,因为hdfs在执行的时候会根据HDOOP_HOME自动识别配置文件中的fs.defaultFS属性所以这样简写也是可以的实战:WordCount案例开发前面我们通过理论层面详细分析了单词计数的执行流程,下面我们就来实际上手操作一下。大致流程如下:第一步:开发Map阶段代码第二步:开发Reduce阶段代码第三步:组装Job在idea中创建WordCountJob类添加注释,梳理一下需求:需求:读取hdfs上的hello.txt文件,计算文件中每个单词出现的总次数hello.txt文件内容如下:helloyouhellome最终需要的结果形式如下:hello2me1you1
  • 所需E币: 0
    时间: 2023-9-20 08:49
    大小: 1.09KB
    上传者: huangyasir1990
    2023版全新高质量商业级小程序全栈项目实战,前端小程序开发主要有原生开发、第三方框架开发、H5网页封装三种,从性能及体验上来看,原生开发>第三方框架>H5封装。H5封装也就是把H5网页封装在小程序内,开发成本低,但是体验不太好、性能也不太好,大部分小程序功能无法使用;第三方框架开发小程序都主要目的是为了一次编写多端运行,然而实际上,使用第三方框架开发小程序会有很多兼容性需要去做处理,很多坑需要去踩,有时候开发成本反而比原生开发更高;原生开发实际上就是按照小程序官方文档中的描述去开发小程序,体验和性能是最好的。2023版全新高质量商业级小程序全栈项目实战(完结22章),开发小程序需要用到哪些技术:1、前端技术小程序的界面和交互都是通过前端技术实现的,包括HTML、CSS、JavaScript等。你需要熟练掌握这些技术,特别是JavaScript,因为小程序使用的是一种叫做“微信小程序框架”的JavaScript框架。2、后端技术小程序需要与后端服务器进行数据交互,所以需要熟悉后端技术,如Node.js、PHP、Python等。3、数据库技术小程序需要使用数据库存储数据,如MySQL、MongoDB等。4、微信小程序开发工具微信提供了一款小程序开发工具,它可以提供代码编辑、调试、预览和发布等功能。
  • 所需E币: 0
    时间: 2023-7-11 15:19
    大小: 861B
    上传者: 蝴蝶结欧恩
    分享一套大数据课程——大数据工程师2023版,33周全,源码+课件+电子书+软件+包升级。全面构建五大能力体系,轻松应对多种岗位需求项目驱动式学习,知其然更知其所以然一、大数据基础· Linux系统使用· Shell脚本开发· Hadoop集群搭建二、离线数据采集计算· 海量数据采集· 海量数据计算· OLAP数据分析· 函数式编程· 内存数据高效计算· 从0~1构建数仓三、实时数据采集计算· 实时数据缓存能力· 内存数据存储能力· NOSQL数据存储能力· 新一代实时数据计算能力· 流式SQL计算能力四、全文检索引擎· 海量数据检索能力· 多条件组合查询能力· 中文词库热更新能力· 检索引擎SQL查询能力五、数据中台· 数据中台架构设计能力· 数据加工总线架构设计  能力· 基于SparkSQL的通用  引擎封装能力· 基于FlinkSQL的通用  引擎封装能力实战:电商数据仓库实战:直播平台关系三度推荐V1.0+V2.0实战:开发仿百度搜索引擎实战:数据中台大屏
  • 所需E币: 0
    时间: 2023-7-10 09:34
    大小: 3.02KB
    上传者: 开心就很好了
    大数据工程师2023版(23年7月升级版33周),视频+源码+PDF课件+电子手册+软件下载地址+接口数据集下载!课程涉及一下内容:1、Linux在大数据领域,Linux是一种常用的操作系统,它提供了丰富的命令行工具和功能,用于处理和分析大数据。Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。它能运行主要的UNIX工具软件、应用程序和网络协议。它支持32位和64位硬件。Linux继承了Unix以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统。2、HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。3、HDFSHDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(highthroughput)来访问应用程序的数据,适合那些有着超大数据集(largedataset)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streamingaccess)文件系统中的数据。4、MapReduceMapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上5、Flumeflume是高可用,高可靠的,分布式的海量日志采集、聚合和传输的系统。用户行为日志通过前端平台存储到logservice中,通过flume的实时采集发过来的信息,然后发送到大数据平台上6、Hivehive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。7、HBaseHBase–HadoopDatabase,是一个分布式的、面向列的开源数据库,该技术来源于FayChang所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(FileSystem)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。8、ImpalaImpala是一个MPP(大规模并行处理)SQL查询引擎:是一个用C++和Java编写的开源软件;用于处理存储在Hadoop集群中大量的数据;性能最高的SQL引擎(提供类似RDBMS的体验),提供了访问存储在Hadoop分布式文件系统中的数据的最快方法。9、ScalaScala全称为ScalableLanguage,即“可伸缩的语言”,之所以这样命名,是因为它的设计目标是希望伴随着用户的需求一起成长。Scala是一门综合了面向对象和函数式编程概念的静态类型的编程语言,它运行在标准的Java平台上,可以与所有的Java类库无缝协作。10、SparkApacheSpark是专为大规模数据处理而设计的快速通用的计算引擎。Spark是一种与Hadoop相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使Spark在某些工作负载方面表现得更加优越,换句话说,Spark启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。11、KafkaKafka是一种高吞吐量的分布式发布订阅消息系统(消息引擎系统),它可以处理消费者在网站中的所有动作流数据。12、RedisRedis(RemoteDictionaryServer),即远程字典服务,是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API13、FlinkApacheFlink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink以数据并行和流水线方式执行任意流数据程序,Flink的流水线运行时系统可以执行批处理和流处理程序。此外,Flink的运行时本身也支持迭代算法的执行。14、ClickHouseClickHouse是一个完全的列式数据库管理系统,允许在运行时创建表和数据库,加载数据和运行查询,而无需重新配置和重新启动服务器,支持线性扩展,简单方便,高可靠性,容错。15、ElasticsearchElasticsearch是位于ElasticStack核心的分布式搜索和分析引擎。Logstash和Beats有助于收集、聚合和丰富您的数据并将其存储在Elasticsearch中。Kibana使您能够以交互方式探索、可视化和分享对数据的见解,并管理和监控堆栈16、数据中台数据中台是一个数据仓库,介于底层海量数据湖(“后台”)和用户界面消费(“前台”)之间,像一个有规则的“货架仓库”。其建造目的是为了节省成本和激发下游用户创造能力,最终实现效率提升与价值增值。
  • 所需E币: 0
    时间: 2023-7-10 10:32
    大小: 1.36KB
    大数据工程师2023版升级版33周,视频+源码+PDF课件+电子手册+软件下载地址+接口数据集下载!大数据开发有两种开发方向,一种是基于Hadoop和Spark开发大数据平台应用,另一种是基于大数据开源组件开发公司需求的一种完善的大数据系统平台,大数据开发主要偏向于使用计算机编程类的知识。关于大数据开发工程师需要具备的技能,需要充分了解一下当前大数据的几个就业方向,可以参考下主流互联网行业的部门架构、职责和JD,大数据开发工程师,总体来说有这么几类,不同的公司叫法不一样:①数仓开发工程师②算法挖掘工程师③大数据平台开发工程师(应用)④大数据前端开发工程师 大数据主要学大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。  旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。大数据技术主要涉及以下方面的内容:1.数据存储与管理:包括传统的关系型数据库以及分布式NoSQL数据库等。2.数据处理与分析:利用数据挖掘和机器学习等技术,对海量数据进行加工分析,以发现其中的价值。3.海量数据的开发与应用:包括海量数据处理框架Hadoop和Spark等技术的开发应用等。4.数据可视化与展示:将数据结果通过各种直观和易懂的方式呈现出来,以帮助人们更好地理解和利用大数据。5.数据安全和隐私保护:如何保证大数据的安全性和隐私性是大数据技术发展中的重要课题之一
  • 所需E币: 0
    时间: 2023-4-19 11:58
    大小: 789B
    上传者: 蝴蝶结欧恩
    分享一套大数据课程——大数据工程师2023版,31周全,源码+课件+电子书+软件+包升级。全面构建五大能力体系,轻松应对多种岗位需求项目驱动式学习,知其然更知其所以然一、大数据基础· Linux系统使用· Shell脚本开发· Hadoop集群搭建二、离线数据采集计算· 海量数据采集· 海量数据计算· OLAP数据分析· 函数式编程· 内存数据高效计算· 从0~1构建数仓三、实时数据采集计算· 实时数据缓存能力· 内存数据存储能力· NOSQL数据存储能力· 新一代实时数据计算能力· 流式SQL计算能力四、全文检索引擎· 海量数据检索能力· 多条件组合查询能力· 中文词库热更新能力· 检索引擎SQL查询能力五、数据中台· 数据中台架构设计能力· 数据加工总线架构设计  能力· 基于SparkSQL的通用  引擎封装能力· 基于FlinkSQL的通用  引擎封装能力
  • 所需E币: 0
    时间: 2023-4-12 09:11
    大小: 1.74KB
    上传者: 开心就很好了
    分享一套大数据工程师体系视频教程——《大数据工程师2023版》,课程一共31周,提供有源码+PDF课件+电子手册+软件下载地址+接口数据集下载!课程内容包含:Linux、Hadoop、flume、hive、hbase、Impala、Scala、Spark、kafka、flink、Clickhouse、ES等等,大数据相关的知识点都包含在里面,学习大数据只要这一套课程足以!课程大纲:【阶段1:走进大数据】第1周、学好大数据先攻克Linux【阶段1:走进大数据】第2周、大数据起源之初识Hadoop【阶段1:走进大数据】第3周、Hadoop之HDFS的使用【阶段1:走进大数据】第4周、Hadoop之HDFS核心进程剖析【阶段1:走进大数据】第5周、Hadoop之初识MR【阶段2:PB级离线数据计算分析存储方案】第6周、拿来就用的企业级解决方案【阶段2:PB级离线数据计算分析存储方案】第7周、Flume从0到高手一站式养成记【阶段2:PB级离线数据计算分析存储方案】第8周、数据仓库Hive从入门到小牛【阶段2:PB级离线数据计算分析存储方案】第9周、Hive扩展内容【阶段2:PB级离线数据计算分析存储方案】第10周、快速上手NoSQL数据库HBase【阶段2:PB级离线数据计算分析存储方案】第11周、数据分析引擎之Impala【阶段3:Spark+综合项目:电商数据仓库设计与实战】第12周、7天极速掌握Scala语言【阶段3:Spark+综合项目:电商数据仓库设计与实战】第13周、Spark快速上手【阶段3:Spark+综合项目:电商数据仓库设计与实战】第14周、Spark性能优化的道与术【阶段3:Spark+综合项目:电商数据仓库设计与实战】第15周、Spark3.x扩展内容【阶段3:Spark+综合项目:电商数据仓库设计与实战】第16周、综合项目:电商数据仓库之用户行为数仓【阶段3:Spark+综合项目:电商数据仓库设计与实战】第17周、综合项目:电商数据仓库之商品订单数仓【阶段4:高频实时数据处理+海量数据全文检索方案】第18周、消息队列之Kafka从入门到小牛【阶段4:高频实时数据处理+海量数据全文检索方案】第19周、极速上手内存数据库Redis【阶段4:高频实时数据处理+海量数据全文检索方案】第20周、Flink快速上手篇【阶段4:高频实时数据处理+海量数据全文检索方案】第21周、Flink高级进阶之路【阶段4:高频实时数据处理+海量数据全文检索方案】第22周、Flink1.15新特性及状态的使用【阶段4:高频实时数据处理+海量数据全文检索方案】第23周、Flink1.15之状态的容错与一致性【阶段4:高频实时数据处理+海量数据全文检索方案】第24周、FlinkSQL(1.15)快速上手【阶段4:高频实时数据处理+海量数据全文检索方案】第25周、FlinkSQL双流JOIN详解【阶段4:高频实时数据处理+海量数据全文检索方案】第26周、实时OLAP引擎之ClickHouse【阶段4:高频实时数据处理+海量数据全文检索方案】第27周、全文检索引擎Elasticsearch【阶段4:高频实时数据处理+海量数据全文检索方案】第28周、Es+HBase仿百度搜索引擎项目【阶段5:综合项目:三度关系推荐系统+数据中台】第29周、直播平台三度关系推荐V1.0【阶段5:综合项目:三度关系推荐系统+数据中台】第30周、直播平台三度关系推荐V2.0【阶段5:综合项目:三度关系推荐系统+数据中台】第31周、数据中台大屏全面构建五大能力体系,轻松应对多种岗位需求大数据基础· Linux系统使用· Shell脚本开发· Hadoop集群搭建离线数据采集计算· 海量数据采集· 海量数据计算· OLAP数据分析· 函数式编程· 内存数据高效计算· 从0~1构建数仓实时数据采集计算· 实时数据缓存能力· 内存数据存储能力· NOSQL数据存储能力· 新一代实时数据计算能力· 流式SQL计算能力全文检索引擎· 海量数据检索能力· 多条件组合查询能力· 中文词库热更新能力· 检索引擎SQL查询能力数据中台· 数据中台架构设计能力· 数据加工总线架构设计  能力· 基于SparkSQL的通用  引擎封装能力· 基于FlinkSQL的通用  引擎封装能力精选企业级项目案例,手把手带你提升实战能力1、离线数据仓库2、实时数据仓库3、直播平台三度关系推荐4、开发仿百度搜索引擎5、数据中台大屏