原创 场效应半导体三极管

2008-8-29 22:21 4472 7 7 分类: 模拟
场效应半导体三极管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。从参与导电的载流子来划分,它有电子作为载流子的N沟道器件和空穴作为载流子的P沟道器件。从场效应三极管的结构来划分,它有结型场效应三极管JFET(Junction type Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semicon-ductor FET)。

2.2.1 绝缘栅场效应三极管的工作原理

绝缘栅场效应三极管(MOSFET)分为:增强型 →N沟道、P沟道
                              耗尽型 →N沟道、P沟道

N沟道增强型MOSFET的结构示意图和符号见图02.13。
电极D(Drain)称为漏极,相当双极型三极管的集电极;

G(Gate)称为栅极,相当于基极;
S(Source)称为源极,相当于发射极。

(1)N沟道增强型MOSFET
① 结构
根据图02.13,N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P型半导体称为衬底,用符号B表示。

2.htm75.gif
图02.13 N沟道增强型MOSFET的结构示意图和符号(动画2-3)

② 工作原理

1.栅源电压VGS的控制作用
 
    当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。
当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,将漏极和源极沟通,所以仍然不足以形成漏极电流ID

    进一步增加VGS当VGS>VGS(th)时(VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 (动画2-4)

    VGS对漏极电流的控制关系可用iD=f(vGS)|VDS=const这一曲线描述,称为转移特性曲线,见图02.14。

2.htm76.jpg
图02.14 转移特性曲线(动画2-4)


 转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。 gm 的量纲为mA/V,所以gm也称为跨导。
跨导的定义式如下:


gm=△ID/△VGS

2.htm77.gif(单位mS)

2.漏源电压VDS对漏极电流ID的控制作用

    当VGS>VGS(th),且固定为某一值时,来分析漏源电压VDS对漏极电流ID的影响。VDS的不同变化对沟道的影响如图02.15所示。根据此图可以有如下关系
                         VDS=VDG+VGS= -VGD+VGS
                         VGD=VGS-VDS
    当VDS为0或较小时,相当VGD>VGS(th),沟道分布如图02.15(a),此时VDS 基本均匀降落在沟道中,沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,漏源之间有电流通过。

    当VDS增加到使VGD=VGS(th)时,沟道如图02.15(b)所示。这相当于VDS增加使漏极处沟道缩减到刚刚开启的情况,称为预夹断,此时的漏极电流ID基本饱和。当VDS增加到VGD<VGS(th)时,沟道如图02.15(c)所示。此时预夹断区域加长,伸向S极。 VDS增加的部分基本降落在随之加长的夹断沟道上, ID 基本趋于不变。

2.htm78.jpg
  (a)                (b)                 (c)
图02.15 漏源电压VDS对沟道的影响(动画2-5)


当VGS>VGS(th),且固定为某一值时,VDS对ID的影响,即iD=f(vDS)|VGS=const这一关系曲线如图02.16所示。这一曲线称为漏极输出特性曲线

2.htm79.gif
(a) 输出特性曲线     (b)转移特性曲线

图02.16 漏极输出特性曲线和转移特性曲线

(2)N沟道耗尽型MOSFET

N沟道耗尽型MOSFET的结构和符号如图02.17(a)所示,它是在栅极下方的SiO2绝缘层中掺入了大量的金属正离子。所以当VGS=0时,这些正离子已经感应出反型层,形成了沟道。于是,只要有漏源电压,就有漏极电流存在。当VGS>0时,将使ID进一步增加。VGS<0时,随着VGS的减小漏极电流逐渐减小,直至ID=0。对应ID=0的VGS称为夹断电压,用符号VGS(off)表示,有时也用VP表示。N沟道耗尽型MOSFET的转移特性曲线如图02.17(b)所示。

2.htm80.gif

(a) 结构示意图          (b) 转移特性曲线 

图02.17 N沟道耗尽型MOSFET的结构和转移特性曲线

(3)P沟道耗尽型MOSFET

P沟道MOSFET的工作原理与N沟道MOSFET完全相同,只不过导电的载流子不同,供电电压极性不同而已。这如同双极型三极管有NPN型和PNP型一样。


2.2.2 伏安特性曲线

      场效应三极管的特性曲线类型比较多,根据导电沟道的不同以及是增强型还是耗尽型可有四种转移特性曲线和输出特性

曲线,其电压和电流方向也有所不同。如果按统一规定的正方向,特性曲线就要画在不同的象限。为了便于绘制,将P沟道管子的

正方向反过来设定。有关曲线绘于图02.18之中。

2.htm81.gif
图02.18 各类场效应三极管的特性曲线

2.2.3 结型场效应三极管

(1) 结型场效应三极管的结构

结型场效应三极管的结构与绝缘栅场效应三极管相似,工作机理也相同。结型场效应三极管的结构如图02.19所示,它是在N型半导体硅片的两侧各制造一个PN结,形成两个PN结夹着一个N型沟道的结构。两个P区即为栅极,N型硅的一端是漏极,另一端是源极。

2.htm82.gif
图02.19 结型场效应三极管的结构(动画2-8)

(2) 结型场效应三极管的工作原理

     根据结型场效应三极管的结构,因它没有绝缘层,只能工作在反偏的条件下,对于N沟道结型场效应三极管只能工作在负栅压区,P沟道的只能工作在正栅压区,否则将会出现栅流。现以N沟道为例说明其工作原理。

① 栅源电压对沟道的控制作用

当VGS=0时,在漏、源之间加有一定电压时,在漏源间将形成多子的漂移运动,产生漏极电流。当VGS<0时,PN结反偏,形成耗尽层,漏源间的沟道将变窄,ID将减小,VGS继续减小,沟道继续变窄,ID继续减小直至为0。当漏极电流为零时所对应的栅源电压VGS称为夹断电压VGS(off)
 
                                          VGS对沟道的控制作用(动画2-9)

② 漏源电压对沟道的控制作用

      在栅极加有一定的电压,且VGS>VGS(off),若漏源电压VDS从零开始增加,则VGD=VGS-VDS将随之减小。使靠近漏极处 的耗尽层加宽,沟道变窄,从左至右呈楔形分布,如图02.21(a)所示。当VDS增加到使VGD=VGS-VDS=VGS(off)时,在紧靠漏极

处出现预夹断,如图02.21(b)所示。当VDS继续增加,漏极处的夹断继续向源极方向生长延长。以上过程与绝缘栅场效应三极管的十分相似,见图02.15。

漏源电压对沟道的控制作用(动画2-9)

(3) 结型场效应三极管的特性曲线

结型场效应三极管的特性曲线有两条,一是转移特性曲线,二是输出特性曲线。它与绝缘栅场效应三极管的特性曲线基本相同,只不过绝缘栅场效应管的栅压可正、可负,而结型场效应三极管的栅压只能是P沟道的为正或N沟道的为负。N沟道结型场效应三极管的特性曲线如图02.22所示。

2.htm83.gif
(a) 漏极输出特性曲线(动画2-6)    (b) 转移特性曲线(动画2-7)

图02.22 N沟道结型场效应三极管的特性曲线

2.2.4 场效应三极管的参数和型号

(1) 场效应三极管的参数

① 开启电压VGS(th) (或VT)
   开启电压是MOS增强型管的参数,栅源电压小于开启电压的绝对值,场效应管不能导通。
② 夹断电压VGS(off) (或VP)
   夹断电压是耗尽型FET的参数,当VGS=VGS(off) 时,漏极电流为零。
③ 饱和漏极电流IDSS
   耗尽型场效应三极管,当VGS=0时所对应的漏极电流。
④ 输入电阻RGS
   场效应三极管的栅源输入电阻的典型值,对于结型场效应三极管,反偏时RGS约大于1MΩ,对于绝缘栅场型效应三极管,RGS约是1M~100MΩ。
⑤ 低频跨导gm 
      低频跨导反映了栅压对漏极电流的控制作用,这一点与电子管的控制作用十分相像。
   gm可以在转移特性曲线上求取,单位是mS(毫西门子)。
⑥ 最大漏极功耗PDM
  最大漏极功耗可由PDM= VDS ID决定,与双极型三极管的PCM相当。

(2) 场效应三极管的型号

场效应三极管的型号,现行有两种命名方法。其一是与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场效应三极管,3DO6C是绝缘栅型N沟道场效应三极管。

第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如,CS14A、CS45G等。

2.2.5 双极型和场效应型三极管的比较

           双极型三极管                           场效应三极管

结构         NPN型                       结型耗尽型       N沟道 P沟道

             PNP型                       绝缘栅增强型     N沟道 P沟道

                                         绝缘栅耗尽型     N沟道 P沟道

  C、E一般不可倒置使用                D、S一般可倒置使用

 载流子     多子扩散、少子漂移                多子漂移

 输入量     电流输入                        电压输入

  控制    电流控制电流源CCCS(β)          电压控制电流源VCCS(gm)

  噪声         较大                          较小

温度特性    受温度影响较大                 较小,并有零温度系数点

输入电阻    几十到几千欧姆                    几兆欧姆以上

静电影响    不受静电影响                      易受静电影响

集成工艺    不易大规模集成               适宜大规模和超大规模集成


 


http://202.194.14.194/dpdzxl/mndl/2-2.htm

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
7
关闭 站长推荐上一条 /3 下一条