原创 传感器与A/D接口的设计

2006-12-5 17:25 4363 6 6 分类: 模拟

       本文主要讨论一下比率传感器(指器件输出与待测量和其他电压或电流的比例有关)的基本原理及其与模数转换器(ADC)配合使用的一些原理和改正的方法。


       许多传感器的输出与其电源电压都是成比例的。这通常是因为产生输出的感应元件是比率器件。最常见的比率元件是电阻器,其阻值随被测量的变化而变化。电阻式温度检测器(RTD)和应变计都是典型的阻性敏感元件。阻性元件的比率性是由于其阻抗不能直接测量。其值是由电阻两端的电压与经过电阻的电流的比值确定的。


           R = U/I 公式1 (欧姆定理)

        使用阻性元件的传感器通常令一个电流流过电阻并测量其电压。在输出传感器之前,可以将该电压进行放大或电平偏移,但是其大小仍然与流过电阻的电流相关。如果该电流来自于电源电压,那么传感器的输出与电源电压成比例。公式2描述了这类比例传感器的输出(图1),其中Vs是输出信号,Ve是激励电压,S是传感器的灵敏度,P是所测参数的量值,C是传感器的失调量。

          Vs = Ve (P x S + C)     公式2

                      图1. 比例型传感器
                                    图1. 比例型传感器

        需要知道激励电压才可使用输出信号,这在许多应用中是很不方便的。为了解决这一问题,制造商在电路上增加了一个电压基准。这种器件可提供非常精确的电压,并与温度和电源电压无关。如果流经感应电阻的电流来自于基准电压,那么公式2中的Ve可用一个常数替换。从而得到公式3,其中的新常数包含在S2和C2之中。

                              Vs = P x S2 + C2 公式3

因为输出信号仅为被测参数的函数,所以公式3不是比例关系。


        用于将传感器信号数字化的ADC也是比例器件。无论其内部架构如何,所有ADC都是通过对未知输入电压与已知参考电压相比较来工作的。转换器的数字化输出是输入电压与参考电压的比值乘以ADC的满量程读数。考虑到内部放大和设计的多样性,还需要一个比例因子K。无论K值大小,只要ADC的配置未改变,K值都保持固定不变。公式4描述了一个普遍意义上的ADC (图2)的数字读数(D)和输入信号(Vs),参考电压(Vref),满量程读数(FS)以及比例因子(K)间的关系。


                                 D = (Vs/Vref)FS x K 公式4


                  图2. 普遍意义上的模数转换器
                                     图2. 普遍意义上的模数转换器

        参考电压的来源与ADC的具体设计有关。在一些ADC中参考电压是电源电压,而在另一些ADC中参考电压来自于内部基准源,在其他设计中,用户必须将参考电压连接至ADC的Vref输入端。如果使用了内部或外部电压基准,使参考电压成为一个衡定值,则公式4可简化为公式5,其中K2是一个新的常数,其值为FS x K/Vref。

                                            D = Vs x K2 公式5


        由一个非比例传感器和具有固定参考电压的ADC组成的小系统的输出可通过将公式3 (传感器的输出)中的Vs (ADC的输入)代入公式5中得到。如公式6所示。


                                              D = P x S2K2 + C2K2 公式6

公式6给出了所需的确切关系。数字量值(D)大小与P的变化成比例,并且仅受P改变的影响。D不受温度和电源电压变化的影响。


       利用电压基准稳定传感器和ADC是一种有效且必要的技术。然而,并非总是最好的技术。本文的其余部分将讨论如何创造性地利用ADC的参考电压输入,从而省去许多传感器电路中的电压基准和电流源。这种设计节省了元件成本、电路板空间以及电压“净空”。由于省去了电压基准,非理想基准相关的误差也不复存在,因此精度也有所改善。这种技术已在汽车工业中应用多年。传感器和ADC与电源电压的比例关系一经确定,便无需精确的电压基准。与之相似的采用电流驱动传感器和单元件阻性传感器(如RTD)的技术已不常用了。这些电路中ADC的灵敏度会随温度或电源电压的变化而变化。虽然如此,ADC和传感器输入的组合还是相当稳定的。将公式2中的输入信号(Vs)代入公式4,便可得到测量比例传感器时ADC的输出。得出公式7,该公式表示:D是P,Ve和Vref的函数。


                      D = P(S x FS x K x Ve/Vref) + C(FS x K x Ve/Vref) 公式7

         乍一看,公式7中的方法似乎并不理想,因为输出(D)是三个变量的函数,而并非仅仅是P的函数。然而,仔细观察会发现:Ve/Vref的比值是非常重要的,单独的数值并无太多意义。如果Ve和Vref电压来自同一个电源,则很容易得到恒定的Ve/Vref比值。一旦这样的话,D将与P的变化成比例,并且只与P的变化有关。设Ve/Vref比值为一个常数,公式7可简化为与公式6相似的形式。因此,这就说明无需电压基准也能实现相同的性能。从实际应用的角度来看,Ve和Vref必须足够大,这样才能避免噪声干扰; 同时Ve和Vref还必须处于ADC和传感器所指定的范围内。用正电源电压作为Ve和Vref的电压源通常可以满足上述要求,并且允许为大量并联的传感器供电。[待续]

PARTNER CONTENT

文章评论2条评论)

登录后参与讨论

用户1053025 2006-12-11 12:36

谢谢chwb,期待续文!

用户1318081 2006-12-5 17:34

   有参阅adi,美信相关技术文档!
相关推荐阅读
用户1318081 2012-11-22 08:47
Altera Quartus II软件12.1版借助强大的高级设计流程,加速系统开发
Altera公司 (Nasdaq: ALTR) 今天宣布,推出Quartus® II 软件12.1 版——在CPLD、FPGA、SoC FPGA和HardCopy® ASIC设计方面,性能和效能在...
用户1318081 2012-11-17 23:26
介绍28nm创新技术,超越摩尔定律
在工艺方法基础上,Altera利用FPGA创新技术超越了摩尔定律,满足更大的带宽要 求,以及成本和功耗预算。Altera Stratix® V FPGA通过28-Gbps高功效收发器突破 了带...
用户1318081 2012-11-17 23:22
Altera与Northwest Logic联合开发RLDRAM 3存储器接口解决方案
Altera公司 (NASDAQ: ALTR)与FPGA高性能知识产权(IP)内核领先供应商Northwest Logic今天宣布,开始提供硬件成熟的1,600 Mbps低延时DRAM (RLDR...
用户1318081 2012-11-17 23:21
Altera电机控制开发工作台前所未有的提高系统集成度、可扩展的性能和灵活性
Altera公司(NASDAQ: ALTR)今天宣布,新的电机控制开发工作台前所未有的提高了电机控制系统设计的系统集成度和灵活性,而且性能还可以扩展,同时大幅度缩短开发时间,降低风险。工作台包括一...
用户1318081 2012-11-07 11:05
Altera OpenCL统一的异构编程
观看OpenCL怎样为异构计算提供统一的平台。在这一演示中,我们将为GPU编写的NVIDIA代码重新定位到Stratix V FPGA上。  ...
用户1318081 2012-11-07 10:58
Altera宣布业界首款支持FPGA的OpenCL工具——进一步加速了FPGA在异构系统中的应用
Altera公司 (NASDAQ: ALTR)今天宣布,提供FPGA业界的第一款用于OpenCL™ 的软件开发套件(SDK) (开放计算语言) 的软件开发套件,它结合了FPGA强大的并行体系结构以...
我要评论
2
6
关闭 站长推荐上一条 /3 下一条