DCD ( Data Carrier Detect 数据载波检测)
DTR(Data Terminal Ready,数据终端准备好)
DSR(Data Set Ready 数据准备好)
RTS( Request To Send 请求发送)
CTS(Clear To Send 清除发送)
在这五个控制信号中,DTR和RTS是DTE设备(数据终端设备,在实际应用中就是路由器)发出的,DSR、CTS和DCD是DCE设备(数据电路终结设备,在实际中就是各种基带MODEM)发出的。
在数字电路中(如计算机),设备甲和设备乙交换信息(通讯),双方采用某个通讯规范(协议)来交换数据,它们的联络过程就叫“握手”,用来联络的信号就叫“握手信号”,单向联络通常用两根联络线:请求,应答,双向则四条。参考资料:JoViSN
9针RS-232串口(DB9) | . | 25针RS-232串口(DB25) | ||||
引脚 | 简写 | 功能说明 | 引脚 | 简写 | 功能说明 | |
1 | CD | 载波侦测(Carrier Detect) | 8 | CD | 载波侦测(Carrier Detect) | |
2 | RXD | 接收数据(Receive) | 3 | RXD | 接收数据(Receive) | |
3 | TXD | 发送数据(Transmit) | 2 | TXD | 发送数据(Transmit) | |
4 | DTR | 数据终端准备(Data Terminal Ready) | 20 | DTR | 数据终端准备(Data Terminal Ready) | |
5 | GND | 地线(Ground) | 7 | GND | 地线(Ground) | |
6 | DSR | 数据准备好(Data Set Ready) | 6 | DSR | 数据准备好(Data Set Ready) | |
7 | RTS | 请求发送(Request To Send) | 4 | RTS | 请求发送(Request To Send) | |
8 | CTS | 清除发送(Clear To Send) | 5 | CTS | 清除发送(Clear To Send) | |
9 | RI | 振铃指示(Ring Indicator) | 22 | RI | 振铃指示(Ring Indicator) |
Pin Name Dir Description
1 CD <-- Carrier Detect
2 RXD <-- Receive Data
3 TXD --> Transmit Data
4 DTR –> Data Terminal Ready
5 GND —– System Ground
6 DSR <-- Data Set Ready
7 RTS --> Request to Send
8 CTS <– Clear to Send
9 RI <– Ring Indicator
1 :DCD :载波检测。主要用于Modem通知计算机其处于在线状态,即Modem检测到拨号音, 处于在线状态。
2 :RXD:此引脚用于接收外部设备送来的数据;在你使用Modem时,你会发现RXD指示灯在闪烁,说明RXD引脚上有数据 进入。
3 :TXD:此引脚将计算机的数据发送给外部设备;在你使用Modem时,你会发现TXD指示灯在闪烁,说明计算机正在通过TXD引脚发送数据。
4 :DTR:数据终端就绪;当此引脚高电平时,通知Modem可以进行数据传输,计算机已经准备好。
5 :GND:信号地;此位不做过多解释。
6 :DSR:数据设备就绪;此引脚高电平时,通知计算机Modem已经准备好,可以进行数据通讯了。
7 :RTS:请求发送;此脚由计算机来控制,用以通知Modem马上传送数据至计算机;否则,Modem将收到的数据暂时放入缓冲区中。
8 :CTS: 清除发送;此脚由Modem控制,用以通知计算机将欲传的数据送至Modem。
9 :RI : Modem通知计算机有呼叫进来,是否接听呼叫由计算机决定
PC机串口通信的工作原理
串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal Serial Bus或者USB混淆)。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。
串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。
典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配:
a:波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。
b:数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准 ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。
c:停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。
d:奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇校验,校验位位1,这样就有3个逻辑高位。高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。
文章评论(0条评论)
登录后参与讨论