谐波失真(THD)指原有频率的各种倍频的有害干扰。放大1kHZ的频率信号时会产生2kHZ的2次谐波和3kHZ及许多更高次的谐波,理论上此数值越小,失真度越低。
由于放大器不够理想,输出的信号除了包含放大了的输入成分之外,还新添了一些原信号的2倍、3倍、4倍……甚至更高倍的频率成分(谐波),致使输出波形走样。这种因谐波引起的失真叫做谐波失真。
总谐波失真指音频信号源通过功率放大器时,由于非线性元件所引起的输出信号比输入信号多出的额外谐波成分。谐波失真是由于系统不是完全线性造成的,我们用新增加总谐波成份的均方根与原来信号有效值的百分比来表示。例如,一个放大器在输出10V的1000Hz时又加上Lv的2000Hz,这时就有10%的二次谐波失真。所有附加谐波电平之和称为总谐波失真。一般说来,1000Hz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。但总谐波失真与频率有关,因此美国联邦贸易委员会于1974年规定,总谐波失真必须在20~20000Hz的全音频范围内测出,而且放大器的最大功率必须在负载为8欧扬声器、总谐波失真小于1%条件下测定。国际电工委员会规定的总谐波失真的最低要求为:前级放大器为0.5%,合并放大器小于等于0.7%,但实际上都可做到0.1%以下:FM立体声调谐器小于等于1.5%,实际上可做到0.5%以下;激光唱机更可做到0.01%以下。
由于测量失真度的现行方法是单一的正弦波,不能反映出放大器的全貌。实际的音乐信号是各种速率不同的复合波,其中包括速率转换、瞬态响应等动态指标。故高质量的放大器有时还注明互调失真、瞬态失真、瞬态互调失真等参数。
(l)互调失真(IMD):将互调失真仪输出的125Hz与lkHz的简谐信号合成波,按4:1的幅值输入到被测量的放大器中,从额定负载上测出互调失真系数。
(2)瞬态失真(TIM):将方波信号输入到放大器后,其输出波形包络的保持能力来表达。如放大器的转换速率不够,则方波信号即会产生变形,而产生瞬态失真。主要反映在快速的音乐突变信号中,如打击乐器、钢琴、木琴等,如瞬态失真大,则清脆的乐音将变得含混不清。
(3)瞬态互调失真:将3.15kHz的方波信号与15kHz的正弦波信号按峰值振幅比4:1混合,经放大器后,新增加全部互调失真的产物有效值与原来正弦振幅的百分比。如放大器采用深度大回环负反馈,瞬态互调失真一般较大,具体反映出声音呆滞、生硬、无临场感;反之,则声音圆滑、细腻、自然。
早在三十年代,F.H.Brittain的扬声器评价十一项测试项目中就有谐波失真,五十年代L.L.Brenek提出的扬声器最重要的特性八项中有它,而今各电声测试系统。从几十万人民币的B&K系统到几千元人民币的国产测试系统都把它做为重要的测量对象。可见谐波失真对电声界一直是个非常重要的参数。
谐波失真:当把基频为f的正弦信号输入扬声器时,扬声器输出除f以外,由扬声器的非线性失真而产生了,同f成整数倍的各次谐波成分:2f.3f……nf,我们称之为谐波失真。谐波失真分为三类,而我们常用到的为THD(TOTALHARMONICDISTORTION)总谐波失真和几次谐波失真(HARMONICDISTORTION)及特性总谐波失真(在实际测量中还会细分为偶次谐波失真,奇次谐波失真和SUB-HARMONICS),它们分别的特性规定为:由失真产生的总谐波声压有效值与总输出声压有效值Pt之比;由失真产生的第几次谐波声压有效值与总输出声压有效值Pt之比;由失真产生的总谐波声压的有效值与平均特性声压Pm之比。在失真的分类中把它划归扬声器的非线性失真。
对待谐波失真我们可以用法国著名哲学大师的萨特的存在主义来看待它!谐波失真客观存在!现我们以锥型扬声器为例:在扬声器低频时或在大振幅运动时扬声器的折环及弹波(定心支片)组成的支撑系统不再符合线性的胡克定律(或称为虎克定律)如在对扬声器进行纯音检听时折环边产生的“啪啪”声,俗称“打边”这是非线性的一个极端表现;在让布边折环的扬声器做大振幅(fo附近,并非所有的扬声器振动的最大振幅都在fo处)的运动时,我们可以很明显的看到布边的扭曲变形。在布边折环上常会“打”上阻尼胶,阻尼胶又分“油性”和“水性”,在PA喇叭上多用的是“油性”,但在高档的厂品上我们常可看在橡胶折环上“打”有透明发亮的水性阻尼胶,一般“打”胶不超过折环的1/2,但这种打胶方式和胶量很难控制;在橡胶折环(现大多用NBR?nitrile-butadienerubber丁腈橡胶)改善上,常对折环的形状处理,但在这个方面的处理方法,国内做的不够,国内在对喇叭单体设计时常重视折环的质量和顺性而忽略折环的另一个量及橡胶的阻尼,虽然在分析锥型扬声器时多用集中参数系统来分析,那是特指在低频时,但是我们是否都把锥型扬声器做超低音和低音呢?此时谐波失真与西勒-斯莫尔参数(Thille-SmallDepartments)中的Qm(力学品质因数)有着很微妙的联系。
华司(上导极板)与T铁的铁拄间的磁感应密度沿轴向(音圈振动方向)的不均匀性,是产生谐波失真的另一原因。现在国内普遍运用的方法的用对称磁路来改善它(如图所示),在低.音单元上,知其然者乘少,未曾看到几许,细想其原因都是“金钱惹的祸”!丹麦的PELESS是的单体内侧加一个铝环来改善它!(如图所示)当然这种做法最易令人发现的做法。
从频率用是BL(磁力系数)的增加。的角度来看,中高频的谐波失真,与低频时的谐波失真是由两类不同的量起决定性作用的,在锥型扬声器中谐波失真客观存在,你只能改善,不能消除。要解决锥型扬声器的谐波失真,除非采用另类的发声原理,但这对整个行业来说是任重而道远,失真就跟测量误差一样,看人家外国厂品的广告“HALCRO------世界上失真最低的放大器”,但在国内看到某日本品牌中国公司的厂品广告上:“彻底解决音箱互调失真!”我倒,我笑,这是对国人的误导和愚弄,更显现出该公司的不负责任和无知!
谐波失真客观存在“有理”。客观测试的结果与主观感觉往环一致,从人耳的听觉机理分析人耳只能区分最初的六个~七个谐音(谐波),对六次以上的谐音很难在感觉上将它们彼此分开,因为到六阶以后的谐音,相邻的两个谐音落在人耳的基底膜上的两个对应区域已相互靠近,并覆盖在一个临界带以内,很难在感觉上将它们彼此分开。但高次谐波对音质的影响不可忽视,通过实验发现异常噪音,来自高次谐波。根据谐波失真的“阶次”,可以分为“软失真”和“硬失真”。但对扬声器来说“偶次”谐波失真和“奇次”谐波失真对音质的改善,更具有指导意义,特别是听感上。胆机在听感上大受发烧友的欢迎就它的“功劳”。从音乐声学看,乐器的基频相对于各次谐音听起来并非都是谐和的,如在乐音中谐和的谐音成分愈多,则音色丰富,纯净好听,不谐和的谐音多,则音乐色粗粝,刺耳难听,七阶以上的奇次谐波会使声音变得粗粝变得粗粝刺耳。
HALCRO------世界上失真最低的放大器
扬声器在中交频段的失真.主要是磁路(铁心)的非线性所致,为了消除铁心所引起的非线性失真,目前常采用一种叫做“线性磁路”的结构,这种磁路结构的特点,是在铁心的顶部中失做成凹陷的形状,使其和导磁板相对的部分由于铁心截面积的减小而接近磁饱和状态,此时,音圈就相当于一个空心线圈,从而避免了铁心影响,减小非线性失真。
音圈的作大长冲程运动时。音圈上的音圈线跳出了气隙半磁场的均匀区,以致机电转换系数BT不能保持恒定电动力效应F=BTI的线性关系受到破坏,从而造成非线性失真。
改善由于这种原因所引起的失真,一般采用两种方法:一是采用短音圈,二是采用长音圈.所谓短音圈,即音圈的长度做得比导磁板的厚度小,如图所了使音圈在振动过程中不致于跳出磁场的均匀区,从而避免了非线性失真。这种方式造成成本提交,不常用,所谓长音圈,则指的是音圈的长度,做得比华司厚度长,使音圈在振动过程中与所有的磁通相耦合,(包括均匀区和非均匀区)从而使平均磁感应密度B总体上保持恒定,以避免非线性失真,但这种方法必定造成扬声器在相同直流阻下,必定要使更粗的音圈线灵敏度下降,因你使音圈的转幅增大,音圈的质量振大,BT,你的磁间隙,因音圈线的变粗而变大,B变小,而B2T2MD。
总谐波失真,英文全称Total Harmonic Distortion,简称THD。在解释总谐波失真之前,我们先来了解一下何为谐波失真。
谐波失真是指音箱在工作过程中,由于会产生谐振现象而导致音箱重放声音时出现失真。尽管音箱中只有基频信号才是声音的原始信号,但由于不可避免地会出现谐振现象(在原始声波的基础上生成二次、三次甚至多次谐波),这样在声音信号中不再只有基频信号,而是还包括由谐波及其倍频成分,这些倍频信号将导致音箱放音时产生失真。对于普通音箱允许一定谐波信号成分存在,但必须是以对声音基频信号输出不产生大的影响为前提条件。
而总谐波失真是指用信号源输入时,输出信号(谐波及其倍频成分)比输入信号多出的额外谐波成分,通常用百分数来表示。一般说来,1000Hz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。所以测试总谐波失真时,是发出1000Hz的声音来检测,这一个值越小越好。
注:一些产品说明书的总谐波失真表示为THD<0.5%,1W,这样看来总谐波失真较小,但只是在输出功率为1W的总谐波失真,这与标准要求的测量条件下得到的总谐波失真是不同的。因此,评价MP3的总谐波失真指标时应注明是在什么条件下测得的。
文章评论(0条评论)
登录后参与讨论