传统上在系统级和寄存器传输级完成VHDL 的描述主要分以下几步:
(1) 分析控制器设计指标, 建立系统算法模型图;
(2) 分析被控对象的时序状态, 确定控制器有限状态机的各个状态及输入.输出条件;
(3) 应用VHDL 语言完成描述。
使用XILINX的ISE6.1软件包能加速有限状态机设计,大大简化状态机的设计过程,实现状态机设计的自动化。下面分析二个简单的状态机设计实例来介绍使用ISE6.1软件包中STATECAD来介绍快速设计有限状态机的方法。使用STATECAD进行状态机设计的流程如下:
(1) 分析控制器设计指标, 建立系统算法模型图;
(2) 分析被控对象的时序状态, 确定控制器有限状态机的各个状态及输入.输出条件;
(3) 在STATECAD中输入有限状态机状态图,自动产生VHDL模型描述,使用STATEBENCH进行状态转移分析,分析无误后使用导出VHDL模型块到ISE中进行仿真后综合,实现到CPLD或FPGA的映射。
设计人员的主要工作在第一步。第二步,第三步基本上可以通过STATECAD完成有限状态机的自动生成和分析,还可以利用分析结果来对被控对象的逻辑进行分析,改进,完善系统控制逻辑。
下面以一个VCR控制机状态机设计过程来介绍如何使用STATECAD设计状态机。
VCR控制机描述:
外部输入:
1.POWERSWITCH---------电源开关
2.STOP----------------停按钮
3.PLAY――――――――播放按钮
4.RECORD―――――――录影按钮
输出状态:
1. 有电显示:电源指示灯亮,播放指示灯灭,录影指示灯灭;
2. 按播放按钮,进入播放状态,播放指示灯亮,电源指示灯亮,录影指示灯灭;按停按钮,退出播放状态回到有电状态,播放指示灯灭,电源指示灯亮,录影指示灯灭;
3. 按录影按钮,进入录影状态,录影指示灯亮;按停按钮,退出录影状态回到有电状态;电源指示灯亮,播放指示灯灭,录影指示灯灭;
4. 电源开关断开,电源指示灯灭,播放指示灯灭,录影指示灯灭;
打开STATECAD,输入如下的状态图:
进行逻辑优化(工具自动进行逻辑优化)后,使用STATEBENCH进行状态转移分析。以下是自动状态转移模拟波形。
也可以进行行为状态模拟:如以下动作的模拟波形,按电源开关上电,按播放按钮,按播放按钮,按停按钮,按录影按钮,按停按钮,电源开关断电。
综合以上的模拟波形结果,可以看到状态机安装指定的状态转移图工作。
导出VHDL模型块到ISE中进行仿真后综合后可以适配到XC9536-5-PC44芯片,适配结果如下:
宏模块使用 Pterms Used 寄存器使用情况 引脚使用情况 IOB使用情况
9/36 (25%) 37/180 (21%) 9/36 (25%) 13/34 (39%) 11/72 (16%)
进行引脚锁定后就可以进行编程。
代码如下:
-- D:\XILINXTUTORIAL\VCRSTATE.vhd
-- VHDL code created by Xilinx's StateCAD 6.1i
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY VCRSTATE IS
PORT (CLK,PLAYSWITCH,POWERSWITCH,RECORDSWITCH,RESET,STOPSWITCH: IN std_logic ;
PLAYLED,POWERLED,RECORDLED : OUT std_logic);
END;
ARCHITECTURE BEHAVIOR OF VCRSTATE IS
TYPE type_sreg IS (OFF,PLAY,POWERON,RECORDING);
SIGNAL sreg, next_sreg : type_sreg;
SIGNAL next_PLAYLED,next_POWERLED,next_RECORDLED : std_logic;
BEGIN
PROCESS (CLK, RESET, next_sreg, next_PLAYLED, next_POWERLED, next_RECORDLED)
BEGIN
IF ( RESET='1' ) THEN
sreg <= OFF; PLAYLED <= '0';
POWERLED <= '0'; RECORDLED <= '0';
ELSIF CLK='1' AND CLK'event THEN
sreg <= next_sreg; PLAYLED <= next_PLAYLED;
POWERLED <= next_POWERLED; RECORDLED <= next_RECORDLED;
END IF;
END PROCESS;
PROCESS (sreg,PLAYSWITCH,POWERSWITCH,RECORDSWITCH,STOPSWITCH)
BEGIN
next_PLAYLED <= '0'; next_POWERLED <= '0'; next_RECORDLED <= '0';
next_sreg<=OFF;
CASE sreg IS
WHEN OFF =>
IF ( POWERSWITCH='1' ) THEN
next_sreg<=POWERON; next_POWERLED<='1';
next_PLAYLED<='0'; next_RECORDLED<='0';
ELSE
next_sreg<=OFF; next_POWERLED<='0';
next_PLAYLED<='0'; next_RECORDLED<='0';
END IF;
WHEN PLAY =>
IF ( POWERSWITCH='1' AND STOPSWITCH='0' ) THEN
next_sreg<=PLAY; next_POWERLED<='1';
next_PLAYLED<='1'; next_RECORDLED<='0';
END IF;
IF ( POWERSWITCH='0' ) THEN
next_sreg<=OFF; next_POWERLED<='0';
next_PLAYLED<='0'; next_RECORDLED<='0';
END IF;
IF ( STOPSWITCH='1' AND POWERSWITCH='1' ) THEN
next_sreg<=POWERON; next_POWERLED<='1';
next_PLAYLED<='0'; next_RECORDLED<='0';
END IF;
WHEN POWERON =>
IF ( POWERSWITCH='0' ) THEN
next_sreg<=OFF; next_POWERLED<='0';
next_PLAYLED<='0'; next_RECORDLED<='0';
ELSIF ( RECORDSWITCH='1' ) THEN
next_sreg<=RECORDING; next_POWERLED<='1';
next_PLAYLED<='0'; next_RECORDLED<='1';
ELSIF ( PLAYSWITCH='1' ) THEN
next_sreg<=PLAY; next_POWERLED<='1';
next_PLAYLED<='1'; next_RECORDLED<='0';
ELSE
next_sreg<=POWERON; next_POWERLED<='1';
next_PLAYLED<='0'; next_RECORDLED<='0';
END IF;
WHEN RECORDING =>
IF ( POWERSWITCH='1' AND STOPSWITCH='0' ) THEN
next_sreg<=RECORDING; next_POWERLED<='1';
next_PLAYLED<='0'; next_RECORDLED<='1';
END IF;
IF ( POWERSWITCH='0' ) THEN
next_sreg<=OFF; next_POWERLED<='0';
next_PLAYLED<='0'; next_RECORDLED<='0';
END IF;
IF ( STOPSWITCH='1' AND POWERSWITCH='1' ) THEN
next_sreg<=POWERON; next_POWERLED<='1';
next_PLAYLED<='0'; next_RECORDLED<='0';
END IF;
WHEN OTHERS =>
END CASE;
END PROCESS;
END BEHAVIOR;
整个状态机实现过程比相当简单。快捷。有效。
文章评论(0条评论)
登录后参与讨论