原创 [IC Design]Basic Concepts of Timing Analysis-时序分析的基本概念

2010-12-28 22:12 4194 27 28 分类: 消费电子

当前绝大多数数字芯片都采用同步流水线设计。时钟频率是同步设计中的关键参数。因为一切功能都与时钟沿相关。这种设计的简化典型结构如下图所示:

前一级寄存器的输出经过组合逻辑运算后成为下一级寄存器的输入,一个复杂的设计会被分成很多级寄存器。为了保证数据可靠的向后级传递,每一级寄存器的建立保持时间必须满足。可以说,时序分析的本质就是分析寄存器的建立保持时间。

Currently, Nearly all of the digital ICs employ synchronous pipe-line structure. One of the most significant parameters is the clock frequency, because all of the functions related to clock edge. The typical structure can be simplified as Fig1.

fig1. synchronous pipe-line.jpg

 

The output of a source register participated in combinational logic, then act as destination register’s input. A complex design will be divided to many levels. Each level’s setup and hold time must be fulfilled. We can say, the essence of the timing analysis is the setup and hold time of each register.

There are three types of paths and two types of analysis run through our design. The three types of paths are clock paths, data path and Asynchronous path. The data path is easy to understand, it includes input/output of each register and the combinational logics. The clock path just like the clock wires in fig1. And the clear is one of the async path. The clock path and Asynchronous path is not as simple as we expected or at any case, even more difficult than data paths. The two types of analysis are Synchronous and Asynchronous. The Synchronous analysis focus on the relationship between clock and data path, and the Asynchronous on clock and async paths. Since the title is the basic concepts of timing analysis, the data path and related clock path is our main business.

Concept 1. Launch Edge and Latch Edge

fig2-launch and latch.jpg

Launch Edge: the edge which “launches” the data from source register

Latch Edge: the edge which “latches” the data at destination register( with respect to the launch edge, selected by timing analyzer: typically 1 cycle)

When analyzing a path the TimeQuest analyzer determines the setup launch and latch edge times by finding the closest two active edges in the respective waveforms. When analyzing setup and hold relationships, the TimeQuest analyzer analyzes the path against two timing conditions for every possible setup relationship, not just the worst-case setup relationship; therefore, the

hold launch and latch times may be unrelated to the setup launch and latch edges.

Concept 2. Setup Time and Hold Time

fig3-setup and hold.jpg

Setup Time: the minimum time data signal must be stable BEFORE clock edge

Hold Time: the minimum time data signal must be stable AFTER clock edge

Concept3. Data Arrival Time

fig4-data arrival time.jpg

Data arrival time indicate the time when the data arrive at destination register’s D input.

Data Arrival Time = launch edge + Tclk1 + Tco + Tdata

Concept4. Clock Arrival Time

fig5-clock arrival time.jpg

Clock arrival time indicate the time when the clock arrive at the destination register’s clock input.

Clock Arrival Time = latch edge + Tclk2

Concept5. Data Required Time

a.       Data Required Time – Setup: The minimum time required for the data to get latched into the destination register

fig6-data required time -setup.jpg

Data Required Time (setup) = Clock Arrival Time + Tsu

a.       Data Required Time – Hold: The minimum time required for the data to get latched into the destination register

fig7. data requred time - hold.jpg

Data required Time (hold) = Clock Arrival Time + Th

Concept6. Setup Slack

Setup slack is the margin by which the setup timing requirement is met. It ensures launched data arrives in time to meet the latching requirement.

fig8. setup slack.jpg

Setup Slack = Data Required Time – Data Arrival Time

Positive slack means Timing requirement met and Negative means not met.

Concept7. Hold Slack

Hold Slack is the margin by which the hold timing requirement is met. It ensures latch data is not corrupted by data from another launch edge.

fig9- hold slack.jpg

Hold Slack = Data Arrival Time – Data Required Time

Same as the Setup Slack, Positive means Timing requirement met and Negative means not met.

 

PARTNER CONTENT

文章评论1条评论)

登录后参与讨论

用户1277994 2010-12-28 16:28

Many Thanks.
相关推荐阅读
用户1575195 2011-10-11 22:15
从10M到100Gbps,以太网芯片接口(二)
XGMII是万兆位以太网中标准的MAC芯片和PHY芯片接口,数据位宽为32bit,工作在156.25MHz双沿采样。它使用HSTL电平标准,在PCB上可以有效传输7CM。因为单板上布局布线的复杂性...
用户1575195 2011-10-11 22:04
从10M到100Gbps,以太网芯片接口(一)
标准的10M/100M以太网MAC芯片与PHY芯片间的接口是MII(介质无关接口)。MII是一个4bit位宽,频率为25MHz的接口。一个标准的MII接口需要16个管脚。它有2个变种,以便在多端口...
用户1575195 2011-09-21 17:40
背板以太网与高能效以太网标准
背板以太网标准 802.3ap标准定义了背板应用的物理层。这些规范包括1Gbps的1000Base-KX,10Gbps使用4条3.125Gbps链路的10Gbase-KX4和10Gbps单条...
用户1575195 2011-09-14 21:58
DDR3的效率杀手——时间参数
DDR系列SDRAM存储芯片的高速率、高集成度和低成本使其理所当然成为存储芯片的一霸。在PC和消费电子领域当然是不必说,它被称为“主存”。其实,随着通信设备价格战愈演愈烈,在看起来水有点深的通信设...
用户1575195 2011-05-13 19:29
互联网又泡沫了吗?
随着国内几家互联网企业扎堆上市,担忧互联网再度泡沫化的声音在互联网上也渐渐多了起来。我比较认同一种观点,在早已多元化的今天,通信行业整体的泡沫化应该还远没到来,可能泡沫化的是某些互联网商业模式。 ...
用户1575195 2011-04-20 21:14
28nm芯片工艺, Xilinx和Altera各执一词
近期, Xilinx和Altera分别在公司召开了28nm工艺新器件发布会。与技术研究该有的严谨不同,对技术成果的展示可以生动活泼。生动活泼之中两家含沙射影的“攻击”让人感叹。正如她们的发布会礼品都选...
EE直播间
更多
我要评论
1
27
关闭 站长推荐上一条 /3 下一条