原创 uboot的启动过程

2014-9-4 18:58 1360 13 13 分类: MCU/ 嵌入式

 

Linux系统是通过Bootloader引导启动的。一上电,就要执行Bootloader来初始化系统。可以通过第4章的Linux启动过程框图回顾一下。
系统加电或复位后,所有CPU都会从某个地址开始执行,这是由处理器设计决定的。比如,X86的复位向量在高地址端,ARM处理器在复位时从地址0x00000000取第一条指令。嵌入式系统的开发板都要把板上ROM或Flash映射到这个地址。因此,必须把Bootloader程序存储在相应的Flash位置。系统加电后,CPU将首先执行它。
主机和目标机之间一般有串口可以连接,Bootloader软件通常会通过串口来输入输出。例如:输出出错或者执行结果信息到串口终端,从串口终端读取用户控制命令等。
Bootloader启动过程通常是多阶段的,这样既能提供复杂的功能,又有很好的可移植性。例如:从Flash启动的Bootloader多数是两阶段的启动过程。从后面U-Boot的内容可以详细分析这个特性。
大多数Bootloader都包含2种不同的操作模式:本地加载模式和远程下载模式。这2种操作模式的区别仅对于开发人员才有意义,也就是不同启动方式的使用。从最终用户的角度看,Bootloader的作用就是用来加载操作系统,而并不存在所谓的本地加载模式与远程下载模式的区别。
因为Bootloader的主要功能是引导操作系统启动,所以我们详细讨论一下各种启动方式的特点。
1.网络启动方式
这种方式开发板不需要配置较大的存储介质,跟无盘工作站有点类似。但是使用这种启动方式之前,需要把Bootloader安装到板上的EPROM或者Flash中。Bootloader通过以太网接口远程下载Linux内核映像或者文件系统。第4章介绍的交叉开发环境就是以网络启动方式建立的。这种方式对于嵌入式系统开发来说非常重要。
使用这种方式也有前提条件,就是目标板有串口、以太网接口或者其他连接方式。串口一般可以作为控制台,同时可以用来下载内核影像和RAMDISK文件系统。串口通信传输速率过低,不适合用来挂接NFS文件系统。所以以太网接口成为通用的互连设备,一般的开发板都可以配置10M以太网接口。
对于PDA等手持设备来说,以太网的RJ-45接口显得大了些,而USB接口,特别是USB的迷你接口,尺寸非常小。对于开发的嵌入式系统,可以把USB接口虚拟成以太网接口来通讯。这种方式在开发主机和开发板两端都需要驱动程序。
另外,还要在服务器上配置启动相关网络服务。Bootloader下载文件一般都使用TFTP网络协议,还可以通过DHCP的方式动态配置IP地址。
DHCP/BOOTP服务为Bootloader分配IP地址,配置网络参数,然后才能够支持网络传输功能。如果Bootloader可以直接设置网络参数,就可以不使用DHCP。
TFTP服务为Bootloader客户端提供文件下载功能,把内核映像和其他文件放在/tftpboot目录下。这样Bootloader可以通过简单的TFTP协议远程下载内核映像到内存。如图6.1所示。
图6.1 网络启动示意图
大部分引导程序都能够支持网络启动方式。例如:BIOS的PXE(Preboot Execution Environment)功能就是网络启动方式;U-Boot也支持网络启动功能。
2.磁盘启动方式
传统的Linux系统运行在台式机或者服务器上,这些计算机一般都使用BIOS引导,并且使用磁盘作为存储介质。如果进入BIOS设置菜单,可以探测处理器、内存、硬盘等设备,可以设置BIOS从软盘、光盘或者某块硬盘启动。也就是说,BIOS并不直接引导操作系统。那么在硬盘的主引导区,还需要一个Bootloader。这个Bootloader可以从磁盘文件系统中把操作系统引导起来。
Linux传统上是通过LILO(LInux LOader)引导的,后来又出现了GNU的软件GRUB(GRand Unified Bootloader)。这2种Bootloader广泛应用在X86的Linux系统上。你的开发主机可能就使用了其中一种,熟悉它们有助于配置多种系统引导功能。
LILO软件工程是由Werner Almesberger创建,专门为引导Linux开发的。现在LILO的维护者是John Coffman,最新版本下载站点:http://lilo.go.dyndns.org。LILO有详细的文档,例如LILO套件中附带使用手册和参考手册。此外,还可以在LDP的“LILO mini-HOWTO”中找到LILO的使用指南。
GRUB是GNU计划的主要bootloader。GRUB最初是由Erich Boleyn为GNU Mach操作系统撰写的引导程序。后来有Gordon Matzigkeit和Okuji Yoshinori接替Erich的工作,继续维护和开发GRUB。GRUB的网站http://www.gnu.org/software/grub/上有对套件使用的说明文件,叫作《GRUB manual》。GRUB能够使用TFTP和BOOTP或者DHCP通过网络启动,这种功能对于系统开发过程很有用。
除了传统的Linux系统上的引导程序以外,还有其他一些引导程序,也可以支持磁盘引导启动。例如:LoadLin可以从DOS下启动Linux;还有ROLO、LinuxBIOS,U-Boot也支持这种功能。
3.Flash启动方式
大多数嵌入式系统上都使用Flash存储介质。Flash有很多类型,包括NOR Flash、NAND Flash和其他半导体盘。其中,NOR Flash(也就是线性Flash)使用最为普遍。
NOR Flash可以支持随机访问,所以代码是可以直接在Flash上执行的。Bootloader一般是存储在Flash芯片上的。另外,Linux内核映像和RAMDISK也可以存储在Flash上。通常需要把Flash分区使用,每个区的大小应该是Flash擦除块大小的整数倍。图6.2是Bootloader和内核映像以及文件系统的分区表。
图6.2  Flash存储示意图
Bootloader一般放在Flash的底端或者顶端,这要根据处理器的复位向量设置。要使Bootloader的入口位于处理器上电执行第一条指令的位置。
接下来分配参数区,这里可以作为Bootloader的参数保存区域。
再下来内核映像区。Bootloader引导Linux内核,就是要从这个地方把内核映像解压到RAM中去,然后跳转到内核映像入口执行。
然后是文件系统区。如果使用Ramdisk文件系统,则需要Bootloader把它解压到RAM中。如果使用JFFS2文件系统,将直接挂接为根文件系统。这两种文件系统将在第12章详细讲解。
最后还可以分出一些数据区,这要根据实际需要和Flash大小来考虑了。
这些分区是开发者定义的,Bootloader一般直接读写对应的偏移地址。到了Linux内核空间,可以配置成MTD设备来访问Flash分区。但是,有的Bootloader也支持分区的功能,例如:Redboot可以创建Flash分区表,并且内核MTD驱动可以解析出redboot的分区表。
除了NOR Flash,还有NAND Flash、Compact Flash、DiskOnChip等。这些Flash具有芯片价格低,存储容量大的特点。但是这些芯片一般通过专用控制器的I/O方式来访问,不能随机访问,因此引导方式跟NOR Flash也不同。在这些芯片上,需要配置专用的引导程序。通常,这种引导程序起始的一段代码就把整个引导程序复制到RAM中运行,从而实现自举启动,这跟从磁盘上启动有些相似。
 
6.1.3  Bootloader的种类
嵌入式系统世界已经有各种各样的Bootloader,种类划分也有多种方式。除了按照处理器体系结构不同划分以外,还有功能复杂程度的不同。
首先区分一下“Bootloader”和“Monitor”的概念。严格来说,“Bootloader”只是引导设备并且执行主程序的固件;而“Monitor”还提供了更多的命令行接口,可以进行调试、读写内存、烧写Flash、配置环境变量等。“Monitor”在嵌入式系统开发过程中可以提供很好的调试功能,开发完成以后,就完全设置成了一个“Bootloader”。所以,习惯上大家把它们统称为Bootloader。
表6.1列出了Linux的开放源码引导程序及其支持的体系结构。表中给出了X86 ARM PowerPC体系结构的常用引导程序,并且注明了每一种引导程序是不是“Monitor”。
表6.1                                                   开放源码的Linux 引导程序
Bootloader
Monitor
描    述
x86
ARM
PowerPC
LILO
Linux磁盘引导程序
GRUB
GNU的LILO替代程序
Loadlin
从DOS引导Linux
ROLO
从ROM引导Linux而不需要BIOS
Etherboot
通过以太网卡启动Linux系统的固件
LinuxBIOS
完全替代BUIS的Linux引导程序
BLOB
LART等硬件平台的引导程序
U-boot
通用引导程序
RedBoot
基于eCos的引导程序
 
对于每种体系结构,都有一系列开放源码Bootloader可以选用。
(1)X86
X86的工作站和服务器上一般使用LILO和GRUB。LILO是Linux发行版主流的Bootloader。不过Redhat Linux发行版已经使用了GRUB,GRUB比LILO有更有好的显示界面,使用配置也更加灵活方便。
在某些X86嵌入式单板机或者特殊设备上,会采用其他Bootloader,例如:ROLO。这些Bootloader可以取代BIOS的功能,能够从FLASH中直接引导Linux启动。现在ROLO支持的开发板已经并入U-Boot,所以U-Boot也可以支持X86平台。
(2)ARM
ARM处理器的芯片商很多,所以每种芯片的开发板都有自己的Bootloader。结果ARM bootloader也变得多种多样。最早有为ARM720处理器的开发板的固件,又有了armboot,StrongARM平台的blob,还有S3C2410处理器开发板上的vivi等。现在armboot已经并入了U-Boot,所以U-Boot也支持ARM/XSCALE平台。U-Boot已经成为ARM平台事实上的标准Bootloader。
(3)PowerPC
PowerPC平台的处理器有标准的Bootloader,就是ppcboot。PPCBOOT在合并armboot等之后,创建了U-Boot,成为各种体系结构开发板的通用引导程序。U-Boot仍然是PowerPC平台的主要Bootloader。
(4)MIPS
MIPS公司开发的YAMON是标准的Bootloader,也有许多MIPS芯片商为自己的开发板写了Bootloader。现在,U-Boot也已经支持MIPS平台。
(5)SH
SH平台的标准Bootloader是sh-boot。Redboot在这种平台上也很好用。
(6)M68K
M68K平台没有标准的Bootloader。Redboot能够支持m68k系列的系统。
值得说明的是Redboot,它几乎能够支持所有的体系结构,包括MIPS、SH、M68K等体系结构。Redboot是以eCos为基础,采用GPL许可的开源软件工程。现在由core eCos的开发人员维护,源码下载网站是http://www.ecoscentric.com/snapshots。Redboot的文档也相当完善,有详细的使用手册《RedBoot User’s Guide》。
6.2.2  U-Boot源码结构
从网站上下载得到U-Boot源码包,例如:U-Boot-1.1.2.tar.bz2
解压就可以得到全部U-Boot源程序。在顶层目录下有18个子目录,分别存放和管理不同的源程序。这些目录中所要存放的文件有其规则,可以分为3类。
· 第1类目录与处理器体系结构或者开发板硬件直接相关;
· 第2类目录是一些通用的函数或者驱动程序;
· 第3类目录是U-Boot的应用程序、工具或者文档。
表6.2列出了U-Boot顶层目录下各级目录存放原则。
表6.2                                                  U-Boot的源码顶层目录说明
目    录
特    性
解 释 说 明
board
平台依赖
存放电路板相关的目录文件,例如:RPXlite(mpc8xx)、smdk2410(arm920t)、sc520_cdp(x86) 等目录
cpu
平台依赖
存放CPU相关的目录文件,例如:mpc8xx、ppc4xx、arm720t、arm920t、 xscale、i386等目录
lib_ppc
平台依赖
存放对PowerPC体系结构通用的文件,主要用于实现PowerPC平台通用的函数
目    录
特    性
解 释 说 明
lib_arm
平台依赖
存放对ARM体系结构通用的文件,主要用于实现ARM平台通用的函数
lib_i386
平台依赖
存放对X86体系结构通用的文件,主要用于实现X86平台通用的函数
include
通用
头文件和开发板配置文件,所有开发板的配置文件都在configs目录下
common
通用
通用的多功能函数实现
lib_generic
通用
通用库函数的实现
Net
通用
存放网络的程序
Fs
通用
存放文件系统的程序
Post
通用
存放上电自检程序
drivers
通用
通用的设备驱动程序,主要有以太网接口的驱动
Disk
通用
硬盘接口程序
Rtc
通用
RTC的驱动程序
Dtt
通用
数字温度测量器或者传感器的驱动
examples
应用例程
一些独立运行的应用程序的例子,例如helloworld
tools
工具
存放制作S-Record 或者 U-Boot格式的映像等工具,例如mkimage
Doc
文档
开发使用文档
 
U-Boot的源代码包含对几十种处理器、数百种开发板的支持。可是对于特定的开发板,配置编译过程只需要其中部分程序。这里具体以S3C2410 arm920t处理器为例,具体分析S3C2410处理器和开发板所依赖的程序,以及U-Boot的通用函数和工具
6.2.3  U-Boot的编译
U-Boot的源码是通过GCC和Makefile组织编译的。顶层目录下的Makefile首先可以设置开发板的定义,然后递归地调用各级子目录下的Makefile,最后把编译过的程序链接成U-Boot映像。
1.顶层目录下的Makefile
它负责U-Boot整体配置编译。按照配置的顺序阅读其中关键的几行。
每一种开发板在Makefile都需要有板子配置的定义。例如smdk2410开发板的定义如下。
 
smdk2410_config :   unconfig
     @./mkconfig $(@:_config=) arm arm920t smdk2410 NULL s3c24x0
 
执行配置U-Boot的命令make smdk2410_config,通过./mkconfig脚本生成include/config.
mk的配置文件。文件内容正是根据Makefile对开发板的配置生成的。
 
ARCH   = arm
CPU    = arm920t
BOARD  = smdk2410
SOC    = s3c24x0
 
上面的include/config.mk文件定义了ARCH、CPU、BOARD、SOC这些变量。这样硬件平台依赖的目录文件可以根据这些定义来确定。SMDK2410平台相关目录如下。
board/smdk2410/
cpu/arm920t/
cpu/arm920t/s3c24x0/
lib_arm/
include/asm-arm/
include/configs/smdk2410.h
再回到顶层目录的Makefile文件开始的部分,其中下列几行包含了这些变量的定义。
 
# load ARCH, BOARD, and CPU configuration
include include/config.mk
export       ARCH CPU BOARD VENDOR SOC
 
Makefile的编译选项和规则在顶层目录的config.mk文件中定义。各种体系结构通用的规则直接在这个文件中定义。通过ARCH、CPU、BOARD、SOC等变量为不同硬件平台定义不同选项。不同体系结构的规则分别包含在ppc_config.mk、arm_config.mk、mips_config.mk等文件中。
顶层目录的Makefile中还要定义交叉编译器,以及编译U-Boot所依赖的目标文件。
 
ifeq ($(ARCH),arm)
CROSS_COMPILE = arm-linux-          //交叉编译器的前缀
#endif
export  CROSS_COMPILE
# U-Boot objects....order is important (i.e. start must be first)
OBJS  = cpu/$(CPU)/start.o                  //处理器相关的目标文件
LIBS  = lib_generic/libgeneric.a            //定义依赖的目录,每个目录下先把目标文件连接成*.a文件。
LIBS += board/$(BOARDDIR)/lib$(BOARD).a
LIBS += cpu/$(CPU)/lib$(CPU).a
ifdef SOC
LIBS += cpu/$(CPU)/$(SOC)/lib$(SOC).a
endif
LIBS += lib_$(ARCH)/lib$(ARCH).a
 
然后还有U-Boot映像编译的依赖关系。
 
ALL = u-boot.srec u-boot.bin System.map
all:        $(ALL)
u-boot.srec:    u-boot
            $(OBJCOPY) ${OBJCFLAGS} -O srec $< $@
u-boot.bin: u-boot
            $(OBJCOPY) ${OBJCFLAGS} -O binary $< $@
……
u-boot:         depend $(SUBDIRS) $(OBJS) $(LIBS) $(LDSCRIPT)
            UNDEF_SYM='$(OBJDUMP) -x $(LIBS) \
            |sed  -n -e 's/.*\(__u_boot_cmd_.*\)/-u\1/p'|sort|uniq`;\
            $(LD) $(LDFLAGS) $$UNDEF_SYM $(OBJS) \
                 --start-group $(LIBS) $(PLATFORM_LIBS) --end-group \
                 -Map u-boot.map -o u-boot
 
Makefile缺省的编译目标为all,包括u-boot.srec、u-boot.bin、System.map。u-boot.srec和u-boot.bin又依赖于U-Boot。U-Boot就是通过ld命令按照u-boot.map地址表把目标文件组装成u-boot。
其他Makefile内容就不再详细分析了,上述代码分析应该可以为阅读代码提供了一个线索。
2.开发板配置头文件
除了编译过程Makefile以外,还要在程序中为开发板定义配置选项或者参数。这个头文件是include/configs/<board_name>.h。<board_name>用相应的BOARD定义代替。
这个头文件中主要定义了两类变量。
一类是选项,前缀是CONFIG_,用来选择处理器、设备接口、命令、属性等。例如:
 
#define   CONFIG_ARM920T         1
#define   CONFIG_DRIVER_CS8900  1
 
另一类是参数,前缀是CFG_,用来定义总线频率、串口波特率、Flash地址等参数。例如:
 
#define     CFG_FLASH_BASE      0x00000000
#define CFG_PROMPT          "=>"
3.编译结果
根据对Makefile的分析,编译分为2步。第1步配置,例如:make smdk2410_config;第2步编译,执行make就可以了。
编译完成后,可以得到U-Boot各种格式的映像文件和符号表,如表6.3所示。
表6.3                                                  U-Boot编译生成的映像文件
文 件 名 称
说    明
文 件 名 称
说    明
System.map
U-Boot映像的符号表
u-boot.bin
U-Boot映像原始的二进制格式
u-boot
U-Boot映像的ELF格式
u-boot.srec
U-Boot映像的S-Record格式
 
U-Boot的3种映像格式都可以烧写到Flash中,但需要看加载器能否识别这些格式。一般u-boot.bin最为常用,直接按照二进制格式下载,并且按照绝对地址烧写到Flash中就可以了。U-Boot和u-boot.srec格式映像都自带定位信息。
4.U-Boot工具
在tools目录下还有些U-Boot的工具。这些工具有的也经常用到。表6.4说明了几种工具的用途。
表6.4                                                              U-Boot的工具
工 具 名 称
说    明
工 具 名 称
说    明
bmp_logo
制作标记的位图结构体
img2srec
转换SREC格式映像
envcrc
校验u-boot内部嵌入的环境变量
mkimage
转换U-Boot格式映像
gen_eth_addr
生成以太网接口MAC地址
updater
U-Boot自动更新升级工具
 
这些工具都有源代码,可以参考改写其他工具。其中mkimage是很常用的一个工具,Linux内核映像和ramdisk文件系统映像都可以转换成U-Boot的格式。
6.2.4  U-Boot的移植
U-Boot能够支持多种体系结构的处理器,支持的开发板也越来越多。因为Bootloader是完全依赖硬件平台的,所以在新电路板上需要移植U-Boot程序。
开始移植U-Boot之前,先要熟悉硬件电路板和处理器。确认U-Boot是否已经支持新开发板的处理器和I/O设备。假如U-Boot已经支持一块非常相似的电路板,那么移植的过程将非常简单。
移植U-Boot工作就是添加开发板硬件相关的文件、配置选项,然后配置编译。
开始移植之前,需要先分析一下U-Boot已经支持的开发板,比较出硬件配置最接近的开发板。选择的原则是,首先处理器相同,其次处理器体系结构相同,然后是以太网接口等外围接口。还要验证一下这个参考开发板的U-Boot,至少能够配置编译通过。
以S3C2410处理器的开发板为例,U-Boot-1.1.2版本已经支持SMDK2410开发板。我们可以基于SMDK2410移植,那么先把SMDK2410编译通过。
我们以S3C2410开发板fs2410为例说明。移植的过程参考SMDK2410开发板,SMDK2410在U-Boot-1.1.2中已经支持。
移植U-Boot的基本步骤如下。
(1)在顶层Makefile中为开发板添加新的配置选项,使用已有的配置项目为例。
 
smdk2410_config   :       unconfig
         @./mkconfig $(@:_config=) arm arm920t smdk2410 NULL s3c24x0
 
参考上面2行,添加下面2行。
 
fs2410_config   :       unconfig
      @./mkconfig $(@:_config=) arm arm920t fs2410 NULL s3c24x0
 
(2)创建一个新目录存放开发板相关的代码,并且添加文件。
board/fs2410/config.mk
board/fs2410/flash.c
board/fs2410/fs2410.c
board/fs2410/Makefile
board/fs2410/memsetup.S
board/fs2410/u-boot.lds
(3)为开发板添加新的配置文件
可以先复制参考开发板的配置文件,再修改。例如:
$cp include/configs/smdk2410.h  include/configs/fs2410.h
如果是为一颗新的CPU移植,还要创建一个新的目录存放CPU相关的代码。
(4)配置开发板
$ make fs2410_config
(5)编译U-Boot
执行make命令,编译成功可以得到U-Boot映像。有些错误是跟配置选项是有关系的,通常打开某些功能选项会带来一些错误,一开始可以尽量跟参考板配置相同。
(6)添加驱动或者功能选项
在能够编译通过的基础上,还要实现U-Boot的以太网接口、Flash擦写等功能。
对于FS2410开发板的以太网驱动和smdk2410完全相同,所以可以直接使用。CS8900驱动程序文件如下。
drivers/cs8900.c
drivers/cs8900.h
对于Flash的选择就麻烦多了,Flash芯片价格或者采购方面的因素都有影响。多数开发板大小、型号不都相同。所以还需要移植Flash的驱动。每种开发板目录下一般都有flash.c这个文件,需要根据具体的Flash类型修改。例如:
board/fs2410/flash.c
(7)调试U-Boot源代码,直到U-Boot在开发板上能够正常启动。
调试的过程可能是很艰难的,需要借助工具,并且有些问题可能困扰很长时间。
6.2.5 添加U-Boot命令
U-Boot的命令为用户提供了交互功能,并且已经实现了几十个常用的命令。如果开发板需要很特殊的操作,可以添加新的U-Boot命令。
U-Boot的每一个命令都是通过U_Boot_CMD宏定义的。这个宏在include/command.h头文件中定义,每一个命令定义一个cmd_tbl_t结构体。
 
#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \
cmd_tbl_t __u_boot_cmd_##name Struct_Section = {#name, maxargs, rep, cmd, usage, help}
 
这样每一个U-Boot命令有一个结构体来描述。结构体包含的成员变量:命令名称、最大参数个数、重复数、命令执行函数、用法、帮助。
从控制台输入的命令是由common/command.c中的程序解释执行的。find_cmd()负责匹配输入的命令,从列表中找出对应的命令结构体。
基于U-Boot命令的基本框架,来分析一下简单的icache操作命令,就可以知道添加新命令的方法。
(1)定义CACHE命令。在include/cmd_confdefs.h中定义了所有U-Boot命令的标志位。
 
#define CFG_CMD_CACHE       0x00000010ULL   /* icache, dcache       */
 
如果有更多的命令,也要在这里添加定义。
(2)实现CACHE命令的操作函数。下面是common/cmd_cache.c文件中icache命令部分的代码。
 
#if (CONFIG_COMMANDS & CFG_CMD_CACHE)
static int on_off (const char *s)
{       //这个函数解析参数,判断是打开cache,还是关闭cache
        if (strcmp(s, "on") == 0) {  //参数为“on”
               return (1);
        } else if (strcmp(s, "off") == 0) {  //参数为“off”
               return (0);
    }
    return (-1);
}
 
int do_icache ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{     //对指令cache的操作函数
      switch (argc) {
      case 2:               /* 参数个数为1,则执行打开或者关闭指令cache操作 */
             switch (on_off(argv[1])) {
             case 0:     icache_disable();        //打开指令cache
                   break;
             case 1:     icache_enable ();        //关闭指令cache
                   break;
             }
            /* FALL TROUGH */
      case 1:           /* 参数个数为0,则获取指令cache状态*/ 
            printf ("Instruction Cache is %s\n",
                    icache_status() ? "ON" : "OFF");
            return 0;
      default:  //其他缺省情况下,打印命令使用说明
            printf ("Usage:\n%s\n", cmdtp->usage);
            return 1;
      }
      return 0;
}
……
U_Boot_CMD( //通过宏定义命令
    icache,   2,   1,     do_icache,  //命令为icache,命令执行函数为do_icache()
    "icache  - enable or disable instruction cache\n",   //帮助信息
    "[on, off]\n"
    "    - enable or disable instruction cache\n"
);
……
#endif
 
U-Boot的命令都是通过结构体__U_Boot_cmd_##name来描述的。根据U_Boot_CMD在include/command.h中的两行定义可以明白。
 
#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \
cmd_tbl_t __u_boot_cmd_##name Struct_Section = {#name, maxargs, rep, cmd, usage, help}
 
还有,不要忘了在common/Makefile中添加编译的目标文件。
(3)打开CONFIG_COMMANDS选项的命令标志位。这个程序文件开头有#if语句需要预处理是否包含这个命令函数。CONFIG_COMMANDS选项在开发板的配置文件中定义。例如:SMDK2410平台在include/configs/smdk2410.h中有如下定义。
 
/***********************************************************
 * Command definition
 ***********************************************************/
#define CONFIG_COMMANDS \
                 (CONFIG_CMD_DFL  | \
                 CFG_CMD_CACHE     | \
                 CFG_CMD_REGINFO    | \
                 CFG_CMD_DATE      | \
                 CFG_CMD_ELF)
 
按照这3步,就可以添加新的U-Boot命令。

文章评论0条评论)

登录后参与讨论
我要评论
0
13
关闭 站长推荐上一条 /2 下一条