原创 SDRAM的读/写时序与突发长度

2010-5-15 13:58 2234 2 2 分类: FPGA/CPLD

SDRAM的读/写时序与突发长度




数据输出(读)


在选定列地址后,就已经确定了具体的存储单元,剩下的事情就是数据通过数据I/O通道(DQ)输出到内存总线上了。但是在CAS发出之后,仍要经过一定的时间才能有数据输出,从CAS与读取命令发出到第一笔数据输出的这段时间,被定义为CL(CAS Latency,CAS潜伏期)。由于CL只在读取时出现,所以CL又被称为读取潜伏期(RL,Read Latency)。CL的单位与tRCD一样,为时钟周期数,具体耗时由时钟频率决定。


不过,CAS并不是在经过CL周期之后才送达存储单元。实际上CAS与RAS一样是瞬间到达的,但CAS的响应时间要更快一些。为什么呢?假设芯片位宽为 n个bit,列数为c,那么一个行地址要选通n×c个存储体,而一个列地址只需选通n个存储体。但存储体中晶体管的反应时间仍会造成数据不可能与CAS在同一上升沿触发,肯定要延后至少一个时钟周期。


由于芯片体积的原因,存储单元中的电容容量很小,所以信号要经过放大来保证其有效的识别性,这个放大/驱动工作由S-AMP负责,一个存储体对应一个S- AMP通道。但它要有一个准备时间才能保证信号的发送强度(事前还要进行电压比较以进行逻辑电平的判断),因此从数据I/O总线上有数据输出之前的一个时钟上升沿开始,数据即已传向S-AMP,也就是说此时数据已经被触发,经过一定的驱动时间最终传向数据I/O总线进行输出,这段时间我们称之为tAC (Access Time from CLK,时钟触发后的访问时间)。tAC的单位是ns,对于不同的频率各有不同的明确规定,但必须要小于一个时钟周期,否则会因访问时过长而使效率降低。比如PC133的时钟周期为7.5ns,tAC则是5.4ns。需要强调的是,每个数据在读取时都有tAC,包括在连续读取中,只是在进行第一个数据传输的同时就开始了第二个数据的tAC。


点击看大图


CL=2与tAC示意图


QIANFU.png


CL的数值不能超出芯片的设计规范,否则会导致内存的不稳定,甚至开不了机(超频的玩家应该有体会),而且它也不能在数据读取前临时更改。CL周期在开机初始化过程中的MRS阶段进行设置,在BIOS中一般都允许用户对其调整,然后BIOS控制北桥芯片在开机时通过A4-A6地址线对MR中CL寄存器的信息进行更改。


不过,从存储体的结构图上可以看出,原本逻辑状态为1的电容在读取操作后,会因放电而变为逻辑0。所以,以前的DRAM为了在关闭当前行时保证数据的可靠性,要对存储体中原有的信息进行重写,这个任务由数据所经过的刷新放大器来完成,它根据逻辑电平状态,将数据进行重写(逻辑0时就不重写),由于这个操作与数据的输出是同步进行互不冲突,所以不会产生新的重写延迟。后来通过技术的改良,刷新放大器被取消,其功能由S-AMP取代,因为在读取时它会保持数据的逻辑状态,起到了一个Cache的作用,再次读取时由它直接发送即可,不用再进行新的寻址输出,此时数据重写操作则可在预充电阶段完成。


数据输入(写)


数据写入的操作也是在tRCD之后进行,但此时没有了CL(记住,CL只出现在读取操作中),行寻址与列寻址的时序图和上文一样,只是在列寻址时,WE#为有效状态。


点击看大图


数据写入的时序图


从图中可见,由于数据信号由控制端发出,输入时芯片无需做任何调校,只需直接传到数据输入寄存器中,然后再由写入驱动器进行对存储电容的充电操作,因此数据可以与CAS同时发送,也就是说写入延迟为0。不过,数据并不是即时地写入存储电容,因为选通三极管(就如读取时一样)与电容的充电必须要有一段时间,所以数据的真正写入需要一定的周期。为了保证数据的可靠写入,都会留出足够的写入/校正时间(tWR,Write Recovery Time),这个操作也被称作写回(Write Back)。tWR至少占用一个时钟周期或再多一点(时钟频率越高,tWR占用周期越多),有关它的影响将在下文进一步讲述。


突发长度


突发(Burst)是指在同一行中相邻的存储单元连续进行数据传输的方式,连续传输所涉及到存储单元(列)的数量就是突发长度(Burst Lengths,简称BL)。在目前,由于内存控制器一次读/写P-Bank位宽的数据,也就是8个字节,但是在现实中小于8个字节的数据很少见,所以一般都要经过多个周期进行数据的传输。上文讲到的读/写操作,都是一次对一个存储单元进行寻址,如果要连续读/写就还要对当前存储单元的下一个单元进行寻址,也就是要不断的发送列地址与读/写命令(行地址不变,所以不用再对行寻址)。虽然由于读/写延迟相同可以让数据的传输在I/O端是连续的,但它占用了大量的内存控制资源,在数据进行连续传输时无法输入新的命令,效率很低(早期的FPE/EDO内存就是以这种方式进行连续的数据传输)。为此,人们开发了突发传输技术,只要指定起始列地址与突发长度,内存就会依次地自动对后面相应数量的存储单元进行读/写操作而不再需要控制器连续地提供列地址。这样,除了第一笔数据的传输需要若干个周期(主要是之前的延迟,一般的是tRCD+CL)外,其后每个数据只需一个周期的即可获得。在很多北桥芯片的介绍中都有类似于X-1-1-1的字样,就是指这个意思,其中的X代表就代表第一笔数据所用的周期数。


点击看大图


非突发连续读取模式:不采用突发传输而是依次单独寻址,此时可等效于BL=1。虽然可以让数据是连续的传输,但每次都要发送列地址与命令信息,控制资源占用极大


点击看大图


突发连续读取模式:只要指定起始列地址与突发长度,寻址与数据的读取自动进行,而只要控制好两段突发读取命令的间隔周期(与BL相同)即可做到连续的突发传输


至于BL的数值,也是不能随便设或在数据进行传输前临时决定。在上文讲到的初始化过程中的MRS阶段就要对BL进行设置。目前可用的选项是1、2、4、 8、全页(Full Page),常见的设定是4和8。顺便说一下,BL能否更改与北桥芯片的设计有很大关系,不是每个北桥都能像调整CL那样来调整BL。某些芯片组的BL是定死而不可改的,比如Intel芯片组的BL基本都为4,所以在相应的主板BIOS中也就不会有BL的设置选项。而由于目前的SDRAM系统的数据传输是以64bit/周期进行,所以在一些BIOS也把BL用QWord(4字,即64bit)来表示。如4QWord就是BL=4。


Page.png


另外,在MRS阶段除了要设定BL数值之外,还要具体确定读/写操作的模式以及突发传输的模式。突发读/突发写,表示读与写操作都是突发传输的,每次读/ 写操作持续BL所设定的长度,这也是常规的设定。突发读/单一写,表示读操作是突发传输,写操作则只是一个个单独进行。突发传输模式代表着突发周期内所涉及到的存储单元的传输顺序。顺序传输是指从起始单元开始顺序读取。假如BL=4,起始单元编号是n,顺序就是n、n+1、n+2、n+3。交错传输就是打乱正常的顺序进行数据传输(比如第一个进行传输的单元是n,而第二个进行传输的单元是n+2而不是n+1),至于交错的规则在SDRAM规范中有详细的定义表,但在这此出于必要性与篇幅的考虑就不列出了。

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
2
关闭 站长推荐上一条 /3 下一条