通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而在闭合及断开的瞬间均伴随有一连串的抖动,为了不产生这种现象而作的措施就是按键消抖。
图为: 单片机边沿检测
module sw_debounce(
clk,rst_n,
sw1_n,sw2_n,sw3_n,
led_d1,led_d2,led_d3
);
input clk; //主时钟信号,50MHz
input rst_n; //复位信号,低有效
input sw1_n,sw2_n,sw3_n; //三个独立按键,低表示按下
output led_d1,led_d2,led_d3; //发光二极管,分别由按键控制
//---------------------------------------------------------------------------
reg[2:0] key_rst;
always @(posedge clk or negedge rst_n)
if (!rst_n) key_rst <= 3'b111;
else key_rst <= {sw3_n,sw2_n,sw1_n};
reg[2:0] key_rst_r; //每个时钟周期的上升沿将low_sw信号锁存到low_sw_r中
always @ ( posedge clk or negedge rst_n )
if (!rst_n) key_rst_r <= 3'b111;
else key_rst_r <= key_rst;
//当寄存器key_rst由1变为0时,led_an的值变为高,维持一个时钟周期
wire[2:0] key_an= key_rst_r & (~key_rst);
/*
key_rst 1 1 1 0 0 1
~key_rst 0 0 0 1 1 0
key_rst_n 1 1 1 0 0 1
key_an 0 0 1 0 0
*/
//---------------------------------------------------------------------------
reg[19:0] cnt; //计数寄存器
always @ (posedge clk or negedge rst_n)
if (!rst_n) cnt <= 20'd0; //异步复位
else if(key_an) cnt <=20'd0;
else cnt <= cnt + 1'b1;
reg[2:0] low_sw;
always @(posedge clk or negedge rst_n)
if (!rst_n) low_sw <= 3'b111;
else if (cnt == 20'hfffff) //满20ms,将按键值锁存到寄存器low_sw中 cnt == 20'hfffff
low_sw <= {sw3_n,sw2_n,sw1_n};
//---------------------------------------------------------------------------
reg [2:0] low_sw_r; //每个时钟周期的上升沿将low_sw信号锁存到low_sw_r中
always @ ( posedge clk or negedge rst_n )
if (!rst_n) low_sw_r <= 3'b111;
else low_sw_r <= low_sw;
/*
low_sw 111 111 111 110 110 110
~low_sw 000 000 000 001 001 001
low_sw_r 111 111 111 110 110 110
led_ctrl 000 000 000 001 000 000
*/
//当寄存器low_sw由1变为0时,led_ctrl的值变为高,维持一个时钟周期
wire[2:0] led_ctrl = low_sw_r[2:0] & ( ~low_sw[2:0]);
reg d1;
reg d2;
reg d3;
always @ (posedge clk or negedge rst_n)
if (!rst_n) begin
d1 <= 1'b0;
d2 <= 1'b0;
d3 <= 1'b0;
end
else begin //某个按键值变化时,LED将做亮灭翻转
if ( led_ctrl[0] ) d1 <= ~d1;
if ( led_ctrl[1] ) d2 <= ~d2;
if ( led_ctrl[2] ) d3 <= ~d3;
end
assign led_d3 = d1 ? 1'b1 : 1'b0; //LED翻转输出
assign led_d2 = d2 ? 1'b1 : 1'b0;
assign led_d1 = d3 ? 1'b1 : 1'b0;
endmodule
具体原理:通常,按键抖动会产生10--20MS 的毛刺,因此要做的实际上就是在20MS 中采样一次,当
检测到按键下降沿的时候,就认定按下,其他状态忽略。采用 50MHz 晶振,时钟周期是20ns,
else if (cnt == 20'hfffff) //每隔20MS 检测一次按键
low_sw <= {sw3,sw2,sw1};
reg [2:0] low_sw_r; //将low_sw 信号锁存一个时钟周期,延时不是真的“锁存”
always @ ( posedge clk or negedge rst_n )
if (!rst_n)
low_sw_r <= 3'b111;
else
low_sw_r <= low_sw;
wire [2:0] led_ctrl = low_sw_r[2:0] & ( ~low_sw[2:0]);
//当检测到按键有下降沿变化时,代表该按键被按下,按键有效
个人觉得,锁存一个时钟周期, 在 FPGA 里的应用实在是太多了,几乎所有的程序都要用到,作用无非是防止竞争冒险,将一个信号延迟一个时钟周期(low_sw_r[2:0]),原来的信号取反(~low_sw[2:0]),2个信号与一下,便可以检测到一个下降沿的变化,从而产生一个宽度为一个时钟周期(20ns)的脉冲,然后将这个脉冲作为控制信号去控制别的进程。
上面都是转自一位特权同学的博客,我在这里解释一下关于锁存一个周期是怎么回事。这里的所存是通过非阻塞语句实现的,always块是并行的,同时执行,非阻塞语句的赋值是先计算所有等式右边的表达式的值,然后一齐赋值,在计算期间,也就是在always块结束以前,等式左边等待赋值的变量仍然保持原来的值,这样,第二级锁存器low_sw_r所存的永远是low_sw上一次的值,这样就实现了将信号锁存一个周期。
wire [2:0] led_ctrl = low_sw_r[2:0] & ( ~low_sw[2:0]);这是一个很经典的下降沿检测语句。因为非阻塞赋值语句,low_sw_r中是low_sw上一个周期的值,将其与这个周期的low_sw取反后相与,就得到按键是否按下的检测结果,0是没按下,1是按下。
下面是百度搜索按键消抖verilog模块:个人觉得没有特权同学说的那么规范,好像缺少了好多东西,没有实在感,可能习惯看特权同学的verilog书写规范吧,觉得下面的verilog语言好别扭。(仅供参考)
Verilog HDL语言实现按键消抖
assign key_done = (dout1 | dout2 | dout3); //按键消抖输出
always @(posedge count[17])
begin
dout1 <= key_in;
dout2 <= dout1;
dout3 <= dout2;
end
always @(negedge key_done[0])
begin
keyen = ~keyen; //将琴键开关转换为乒乓开关
end
程序中所用的方法是不断检测按键值。每当Count[17]上升沿到来,就进行检测输入信号。其中dout1,dout2,dout3分别为当前、上个Count[17]上升沿、上上个Count[17]上升沿输入数值。正常情况下为1,假如连续三次为0,三个信号作或运算,使得key_done信号为0,出现下降沿,这样就认为是有按键。
边沿检测法RTL和MAP Viewer,感受下边沿检测的魅力
边沿检测应用
边沿检测技术在项目应用中,非常低广泛。如要有效捕获信号跳变沿,边沿检测技术的应用是必不可少的。大致归纳了一下,有如下几个方面
(1)将时钟边沿使能转换为边沿检测使能,使时钟同步化。
(2)捕获信号的突变(UART,SPI等信号使能突变)
(3)逻辑分析仪中信号的边沿检测。
用户971939 2015-8-18 15:30
用户971939 2015-8-18 15:28