二、 现有技术为什么不适于研究人工智能现有的人工智能方式主要是利用数学公式将特征事物通过数学建模转换为数学模型,比如神经网络的模型,利用特定的运算手段求解,并通过计算机编程实现运算过程。这种方法可以收到一定的效果,但是由于模型过于简单,运算量过大,使得智能几乎不可能实现。那么数学手段为什么很难推演智能呢?数学是一个独立于自然界的一个自洽的运算体系,变量之间的约束关系构成了数学公式,然而这些公式中能够被求解的大多是多数入变量,单输出变量的公式,即使是利用矩阵的方法,最多也只能处理实数集合。但是,如果需要进行运算的是一个复杂的数据结构体,就显得颇为繁琐,比如人包括头部和身体,头部包括五官和大脑等,五官的任何一个还有其内部结构。这样的数据格式,任何数学公式对它的演算都必将使繁琐的。何况如果数据单元的各个数据之间还有许多牵连的话就更加无法表达了。然而,生活中映射到我们大脑中的很多事物都具有很复杂的特征,特征来源于不同方面(颜色,形状),特征之间含有复杂的层次关系,这些特征彼此联系,这样的特征集合作为数据输入进行数学运算将是难以得出结论的。其次是计算机的模拟问题,虽然计算机有很快的处理速度,我们的大脑在信号的传递速度上比计算机慢大概一百万倍。有个很有趣的法则,叫做一百步法则,是说一秒钟之内,你所做出的判断实际上最多经历了大脑中的一百个神经元的链条,它的传播速度使得信号只可能走这么远,但是我们一秒钟之内完全可以辨认出熟人的面孔,如果将这个工作交给计算机,几万行指令都不能实现。其根本原因其一是大脑的处理结构是对等的,然而计算机是专有的,不同的区域由自己专门的任务。比如中央处理器,内存,显示卡等,中央处理器内部的结构也是专有化的。其二是处理的非并行,典型的微机只有一个核心处理单元(ALU),每一个时刻,只允许有一条指令通过,无论其运转频率有多高。如果想让计算机处理并发事件,那么其唯一的办法就是分时处理。即在不同的时间段处理不同的任务。现今的多核处理架构虽然可以进行少量的并行,但是其结构体系的功能专有化并没有任何改变。然而对于大脑,从硬件结构上讲,是由大规模的对等结构组成,这个体系中的每一个处理单元的作用微乎其微,然而,正是这种规模化的协同并行处理使得其具有智能。诸如上述,如果实现人工智能,就必须从大脑的结构出发,从大脑的基本处理方法出发,真正理解大脑的工作原理是开发人工智能机器的必由之路。
zhujun74_602010376 2014-11-8 17:35
用户443437 2013-10-12 10:34
用户1663908 2013-10-12 08:50
用户437005 2013-10-12 08:29