如何避免上电打火
此块电路板在上电时有打火现象,通过直流电源观察到,启动电流超过了3A的阈值,可以清晰的听到直流电源继电器的声音。过了启动瞬间之后,电流会立刻降低到10mA以下。
从前设计的电路板,使用LM2596 作为电路板稳压芯片,并使用220uF的输入电容,+12V输入电压,打火情况几乎可忽略不计,它引起的电流冲击也不会造成器件的破坏,所以也没有做消除打火的措施。而这块电路板打火现象非常严重,调试工具USB/RS232转换线也跟着不正常。所以增加消除打火的电路就变得非常必要了。
打火现象主要是由于输入电容太大引起的。LM2677的输入电容2200uF。消除打火,就是要给电容预充电(pre-charge)。以下灰色字体的内容来自维基百科的pre-charge词条:
“Precharge of the powerline voltages in a high voltage DC application is a preliminary mode which currentlimits the power source such that a controlled rise time of the system voltage during power up is achieved.”
“When a highvoltage system is designed appropriately to handle the flow of maximum rated power through its distribution system, the components within the system can still undergo considerable stress upon the system ‘power up’. In some applications, the occasion to activate the system is a rare occurrence, such as in commercial utility power distribution which is typically on almost all of the time. Yet in other systems such as in vehicle applications, activation will occur with every individual use of the system. When a long life of the components and a high reliability of the high voltage system is needed, then a powerup method which reduces and limits the powerup stress is required.”
pre-charge可以限制电流输出,并在power-up时控制板上电压的上升时间,虽然一个设计得很好的high-voltage系统能够承受power-up的冲击,但是需要经常启动的系统,比如车辆应用,需要提高器件寿命和可靠性时,使用pre-charge就很必要。
“Inrush currents into capacitive components are a key concern in powerup stress to components.When DC input power is applied to a capacitive load, the step response of the voltage input will cause the input capacitor to charge. The capacitor charging starts with an inrush current and ends with an exponential decay down to the steady state condition. When the magnitude of the inrush peak is very large compared to the maximum rating of the components, then components stress is to be expected. The current into a capacitor is known to be I=(dV/dT): the peak inrush current will depend upon the capacitor C and the rate of change of the voltage (dV/dT). The inrush current will increase as the capacitance value increases, and the inrush current will increase as the voltage of the power source increases. This second parameter is of primary concern in high voltage power distribution systems. By their nature, high voltage power sources will deliver high voltage into distribution system. Capacitive loads will then be subject to high inrush currents upon powerup. The stress to the components must be understood and minimized.”
In-rush电流(浪涌电流)是电容的关键参数。电容充电始于in-rush current,结束于指数级衰退。电容的电流为I=C(dV/dT),因此电容的容值越大,电源电压的上升趋势越大,inrush电流也会越大。
从上表看出,如果输入电容11000uF,电源电压在10ms内升至+28V,inrush电流会到31A。而LM2677的输入电容为2200uF,inrush电流约为6.2A。
“The functional requirement of the high voltage precharge circuit is to minimize the peak current out from the power source by slowing down the dV/dT of the input power voltage such that a new ‘precharge mode’ is created. Of course the inductive loads on the distribution system must be switched off during the precharge mode. While precharging, the system voltage will rise slowly and controllably with powerup current never exceeding the maximum allowed. As the circuit voltage approached near steady state, then the precharge function is complete. Normal operation of a precharging circuit is to terminate precharge mode when the circuit voltage is 90% or 95% of the operating voltage. Upon completion of precharging, the precharge resistance is switched out of the power supply circuit and returns to a low impedance power source for normal mode. The high voltage load are then powered up sequentially.”
既然电容通常不方便修改,那么就可以通过减慢dV/dT来减小inrush电流。当pre-charge进行时,不能接通感性负载,如电机。当到达operation电压的90%或者95%时,pre-charge就可以终止。终止后,可以将pre-charge电阻短接,以减少功耗。
“The simplest inrushcurrent limiting system, used in many consumer electronics devices, is a NTC resistor. When cold, its high resistance allows a small current to precharge the reservoir capacitor. After it warms up, its low resistance more efficiently passed the working current.”
最简单的pre-charge电路,是使用一个NTC热敏电阻。启动时,它的温度较低,阻值较大,用来给电容充电;随着温度升高,阻值变小,用来通过工作电流。
也有使用继电器的pre-charge方案,它能完全短接pre-charge电阻,从而最大限度的减少功耗。考虑到继电器的硬件成本和功耗,LM2677这个电路还是采用了NTC热敏电阻的方案。
那剩下的工作,就是选择合适的NTC电阻了。以下灰色字体的内容来自http://www.yzxdz.com/news_content-79990.html:
“滤波电容的大小决定了应该选用多大尺寸的NTC。对于某个尺寸的NTC热敏电阻来说,允许接入的滤波电容的大小是有严格要求的,这个值也与最大额定电压有关。在电源应用中,开机浪涌是因为电容充电产生的,因此通常用给定电压值下的允许接入的电容量来评估NTC热敏电阻承受浪涌电流的能力。对于某一个具体的NTC热敏电阻来说,所能承受的最大能量已经确定了,根据一阶电路中电阻的能量消耗公式E=1/2×CV2可以看出,其允许的接入的电容值与额定电压的平方成反比。简单来说,就是输入电压越大,允许接入的最大电容值就越小,反之亦然。”
“NTC热敏电阻产品的规范一般定义了在220Vac下允许接入的最大电容值。假设某应用条件最大额定电压是420Vac,滤波电容值为200μF,根据上述能量公式可以折算出在220Vac下的等效电容值应为200×4202/2202=729μF,这样在选型时就必须选择220Vac下允许接入电容值大于729μF的型号。”
“电子产品允许的最大启动电流值决定了NTC热敏电阻的阻值。假设电源额定输入为220Vac,内阻为1Ω,允许的最大启动电流为60A,那么选取的NTC在初始状态下的最小阻值为Rmin=(220×1.414/60)-1=4.2(Ω)。”
“产品正常工作时,长期加载在NTC热敏电阻上的电流应不大于规格书规定的电流。根据这个原则可以从阻值大于4.2Ω的多个电阻中挑选出一个适合的阻值。当然这指的是在常温情况下。如果工作的环境温度不是常温,就需要按下文提到的原则来进行NTC热敏电阻的降额设计。”
“电源设计中使用NTC热敏电阻型浪涌抑制器,其抑制浪涌电流的能力与普通电阻相当,而在电阻上的功耗则可降低几十到上百倍。对于需要频繁开关的应用场合,电路中必须增加继电器旁路电路以保证NTC热敏电阻能完全冷却恢复到初始状态下的电阻。在产品选型上,要根据最大额定电压和滤波电容值选定产品系列,根据产品允许的最大启动电流值和长时间加载在NTC热敏电阻上的工作电流来选择NTC热敏电阻的阻值,同时要考虑工作环境的温度,适当进行降额设计。 ”
文章评论(0条评论)
登录后参与讨论