工业设备通信通常涉及到很多硬件和软件产品以及用于连通标准计算机平台(个人计算机或工作站)和工业自动化应用设备的协议,而且所使用设备和协议的
种类繁多。因此,大部分自动化应用设备都希望执行简单的串行命令,并希望这些命令同个人计算机或者附加的串行端口板上的标准串行端口兼容。RS-232是
目前PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。由于RS-232的发送端与接收
端之间有公共信号地,所以它不能使用双端信号,否则,共模噪声会耦合到信号系统中。RS-232标准规定,其最大距离仅为15m,信号传输速率最高为
20kbit/s。
CAN,全称为“Controller Area
Network”,即控制器局域网,是国际上应用最广泛的现场总线之一,一个由CAN总线构成的单一网络受到网络硬件电气特性的限制。CAN作为一种多主
方式的串行通讯总线,其基本设计规范要求高位速率和较高的抗电磁干扰性能,而且要能够检测出通讯总线上产生的任何错误。当信号传输距离达10km时,
CAN仍可提供高达50kbit/s的数据传输速率。表1为CAN总线上任意两个节点之间最大传输距离与其位速率之间的对应关系。
位速率/kbps | 1000 | 500 | 250 | 125 | 100 |
最大距离/m | 40 | 130 | 270 | 530 | 620 |
位速率/kbps | 50 | 20 | 10 | 5 | |
最大距离/m | 1300 | 3300 | 6700 | 10000 | |
在设计RS-232到CAN的转换装置时,用单片机AT89C52作为微处理器;用SJA1000作为CAN微控制器,SJA1000中集成了
CAN协议的物理层和数据链路层功能,可被动局面对通信数据的帧处理;AT82C250作为CAN控制器和物理总线之间的接口,用于提供总线的差动发送能
力和CAN控制器的差动接收能力,通过AT82C250的引脚3可选择三种不同的工作方式(高速、斜率控制和待机)。其中引脚3接地时为高速方式;高速光
隔用6N137实现,其作用是防止串入信号干扰;MAX232用来完成232电平到微控制器接口芯片TTL电平的转换。具体的硬件接口电路参见
SJA1000的有关资源,这里不再多做说明。但有以下几点需要注意。
(1)CAN总线两端接有一个120Ω的电阻,其作用是匹配总线阻抗,提高数据通信的抗干扰性及可靠行。但实际上只需保证CAN网络中“CAN_H”和“CAN_L”之间的跨接电阻为60Ω即可。
(2)SJA1000的20引脚RX1在不使用时可接地(具体原因见软件设计),配合CDR.6的置位可使总线长度大大增加。
(3)引脚TX0、TX1的接法决定了串行输出的电平。具体关系可参考输出控制寄存器OCR的设置。
(4)AT82C250的RS引脚与地间接有一个斜率电阻。电阻大小可根据总线通信速度作适当调整,一般在16kΩ~140kΩ之间。
(5)MAX232外围需要四个电解电容C1、C2、C3、C4,这些电容也是内部电源转换所需电容,其取值均为1μF/25V,宜选用钽电容并且位置应用量靠近芯片,电源VCC和地之间要接一个0.1μF的去耦电容。
3 RS-232到CAN转换的软件设计
在
微处理控制下,RS-232和CAN进行数据交换时,采用串口接收和CAN中断方式可提高工作效率。其主程序流程图如图2所示。SJA1000的初始化在
复位模式下才可以进行,主要包括工作方式的设置、时钟分频和验收滤波寄存器的设置、波特率参数的设置以及中断允许寄存器的设置等。
数据能否准确传递还取决于波特率和流量控制,这也是软件设计时不可忽略的地方。因此接下来主要介绍CAN波特率的设置、串口波特率的自动检测、串口数据流量控制。
3.1 CAN滤波率的设置
CAN协议中的要素之一是波特率。用户可以设置位周期中的位采样点位置和采样次数,以使用户可以自由地优化应用网络性能,但在优化过程中,要注意位定时参数基准参考振荡器的容差和系统中不同信号传播延迟之间的关系。
系
统的位速率fBil表示每单位时间传输数据位的量,即波特率fBit=1/tBit。额定的位定时由3个互不重叠的段SYNC_SEG、TSEG1和
TSEG2组成,这3个时间段分别是TSYNC_SEG、TSEG1和TSEG2组成,这3个时间段分别是tSYNC_SEG、tTSEG1和
tTSEG2。所以,额定位周期tBit是3个时间段的和。
tBit=tSYNC_SEG+tTSEG1+tTSEG2
位周期中这些段都用整数个基本时间单位来表示。该时间单位叫时间份额TQ,时间份额的持续时间是CAN系统时钟的一个周期tSCL,可从振荡器时钟周期tCLK取得。通过编程预分频因数(波特率预设值BRP)可以调整CAN系统时钟。具体如下:
tSCL=BRP×2tCLK=2BPR/fCLK
对CAN位定时计算的另一个很重要的时间段是同步跳转宽度(SJW),持续
时间是tSJW。SJW段并不是位周期的一段,只是定义了在重同步事件中被增长或缩短的位周期的最大TQ数量。此外,CAN协议还允许用户指定位采样模式
(SAM),分别是单次采样和三次采样模式(在3个采样结果中选出1个)。在单次采样模式中,采样点在TESG1段的末端。而三次采样模式比单次采样多取
两个采样点,它们在TSEG1段末端的前面,之间相差一个TQ。
上面所提到的BPR、SJW、SAM、TESG1、TESG2都可由用户通过CAN控制器的内装中寄存器BTR0和BTR1来定义。具体如图3所示。设置好BTR0和BTR1后,实际传输的波特率范围为:
最大=1/(tBit-tSJW),最小=1/(tBit+tSJW)
3.2 串口波特率检测
当
串口设备是主机时,如需检测此时转换装置的串口波特率,首先可对主机的接收波特率(以9600波特为例)进行设定,并在终端发送一个特定的字符(以回车符
为例),这样,主机根据接收到的字符信息就可以确定转换装置的通信波特率。回车符的ASCII值是0DH,在不同波特率下接收到的值如表2所列。
波特率(bit/s) | 接收字节(十六进制) | 波特率(bit/s) | 接收字节(十六进制) |
1200 | 80 | 4800 | E6 |
1800 | F0 | 9600 | 0D |
2400 | 78 | 19200 | F* |
计算机的微型化为测控仪表的智能化提供了必要的条件,使得带微处理器的终端设备具备
更好的数字通信能力。随着越来越多智能终端的出现,无论是对网络的结构、协议、实时性,还是适用性、灵活性、可靠性乃至成本都有了更高的要求,因此现场总
线有着很好的发展前景。CAN总线的帧结构拥有标识ID,这使得设备网络中拥有多台网络主机成为可能,即通过网络主机可以监控整个设备网络的工作情况并作
出相应的控制决策。本装置目前已开发完成,并在实际应用中取得了非常好的效果。
文章评论(0条评论)
登录后参与讨论