原创 (转载)LDO稳压器工作原理

2010-11-11 13:57 1402 4 4 分类: MCU/ 嵌入式

   原文网址:http://www.dzjs.net/html/zonghejishu/2008/0911/3354.html


     随着便携式设备(电池供电)在过去十年间的快速增长,象原来的业界标准 LM340 和 LM317 这样的稳压器件已经无法满足新的需要。这些稳压器使用NPN 达林顿管,在本文中称其为NPN 稳压器(NPN regulators)。预期更高性能的稳压器件已经由新型的低压差(Low-dropout)稳压器(LDO)和准LDO稳压器(quasi-LDO)实现了。
(原文:Linear Regulators: Theory of Operation and Compensation )


NPN 稳压器(NPN regulators)
      在NPN稳压器(图1:NPN稳压器内部结构框图)的内部使用一个 PNP管来驱动 NPN 达林顿管(NPN Darlington pass transistor),输入输出之间存在至少1.5V~2.5V的压差(dropout voltage)。这个压差为:
           Vdrop = 2Vbe +Vsat(NPN 稳压器)                            


        (1)
 
       
LDO 稳压器(LDO regulators)
      在LDO(Low Dropout)稳压器(图2:LDO稳压器内部结构框图)中,导通管是一个PNP管。LDO的最大优势就是PNP管只会带来很小的导通压降,满载(Full-load)的跌落电压的典型值小于500mV,轻载(Light loads)时的压降仅有10~20mV。LDO的压差为:
            Vdrop = Vsat (LDO 稳压器)                                         


   (2)
 
          
准LDO 稳压器(Quasi-LDO regulators)
      准LDO(Quasi-LDO)稳压器(图3: 准 LDO 稳压器内部结构框图)已经广泛应用于某些场合,例如:5V到3.3V 转换器。 准LDO介于 NPN 稳压器和 LDO 稳压器之间而得名, 导通管是由单个PNP 管来驱动单个NPN 管。 因此,它的跌落压降介于NPN稳压器和LDO之间:
            Vdrop = Vbe +Vsat                                                                 


(3)
 
        
稳压器的工作原理(Regulator Operation)
      所有的稳压器,都利用了相同的技术实现输出电压的稳定(图4:稳压器工作原理图)。输出电压通过连接到误差放大器(Error Amplifier)反相输入端(Inverting Input)的分压电阻(Resistive Divider)采样(Sampled),误差放大器的同相输入端(Non-inverting Input)连接到一个参考电压Vref。 参考电压由IC内部的带隙参考源(Bandgap Reference)产生。 误差放大器总是试图迫使其两端输入相等。为此,它提供负载电流以保证输出电压稳定:
           Vout = Vref(1 + R1 / R2)                                                  


   (4)
 
       
性能比较(Performance Comparison)
      NPN,LDO和准LDO在电性能参数上的最大区别是:跌落电压(Dropout  Voltage)和地脚电流(Ground Pin Current)。跌落电压前文已经论述。为了便于分析,我们定义地脚电流为Ignd (参见图4),并忽略了IC到地的小偏置电流。那么,Ignd等于负载电流IL除以导通管的增益。
      NPN 稳压器中,达林顿管的增益很高(High Gain), 所以它只需很小的电流来驱动负载电流IL。这样它的地脚电流Ignd也会很低,一般只有几个mA。 准LDO也有较好的性能,如国半(NS)的LM1085能够输出3A的电流却只有10mA的地脚电流。
      然而,LDO的地脚电流会比较高。在满载时,PNP管的β值一般是15~20。也就是说LDO的地脚电流一般达到负载电流的7%。
      NPN稳压器的最大好处就是无条件的稳定,大多数器件不需额外的外部电容。 LDO在输出端最少需要一个外部电容以减少回路带宽(Loop Bandwidth)及提供一些正相位转移(Positive Phase Shift)补偿。 准LDO一般也需要有输出电容,但容值要小于LDO的并且电容的ESR局限也要少些。


反馈及回路稳定性(Feedback and Loop Stability)
       所有稳压器都使用反馈回路(Feedback Loop)以保持输出电压的稳定。 反馈信号在通过回路后都会在增益和相位上有所改变,通过在单位增益(Unity Gain,0dB)频率下的相位偏移总量来确定回路的稳定性。

波特图(Bode Plots)
      波特图(Bode Plots)可用来确认回路的稳定性,回路的增益(Loop Gain,单位:dB)是频率(Frequency)的函数(图5:典型的波特图)。 回路增益及其相关内容在下节介绍。 回路增益可以用网络分析仪(Network  Analyzer)测量。 网络分析仪向反馈回路(Feedback  Path)注入低电平的正弦波(Sine  Wave),随着直流电压(DC)的不断升高, 这些正弦波信号完成扫频,直到增益下降到0dB。然后测量增益的响应(Gain Response)。
 
      波特图是很方便的工具,它包含判断闭环系统(Closed-loop System)稳定性的所有必要信息。 包括下面几个关键参数:环路增益(Loop  Gain),相位裕度(Phase Margin)和零点(Zeros)、极点(Poles)。
            
回路增益(LOOP GAIN)
      闭环系统(Closed-loop System)有个特性称为回路增益(Loop Gain)。在稳压电路中,回路增益定义为反馈信号(Feedback Signal)通过整个回路后的电压增益(Voltage Gain)。为了更好的解释这个概念,LDO的结构框图(图2)作如下修改(图6:回路增益的测量方法)。
 
      变压器(Transformer)用来将交流信号(AC Signal)注入(Inject)到“A”、“‘B”点间的反馈回路。借助这个变压器,用小信号正弦波(Small-signal Sine Wave)来“调制”(modulate)反馈信号。可以测量出A、B两点间的交流电压(AC Voltage),然后计算回路增益。回路增益定义为两点电压的比(Ratio):
                     Loop Gain = Va / Vb                                                             (5)
        需要注意, 从Vb点开始传输的信号, 通过回路(Loop)时会出现相位偏移(Phase Shift),最终到达Va点。相位偏移(Phase Shift)的多少决定了回路的稳定程度(Stability)。 


反馈(FEEDBACK)
      如前所述,所有的稳压器都采用反馈( Feedback)以使输出电压稳定。输出电压是通过电阻分压器进行采样的(图6),并且该分压信号反馈到误差放大器的一个输入端,误差放大器的另一个输入端接参考电压,误差放大器将会调整输出到导通管(Pass Transistor)的输出电流以保持直流电压(DC Valtage)的稳定输出。
      为了达到稳定的回路就必须使用负反馈(Negative Feedback)。负反馈,有时亦称为改变极性的反馈(degenerative feedback),与源信号的极性相反(图7:反馈信号的相位示意图)。
 
    负反馈与源(Source)的极性相反,它总会阻止输出的任何变化。也就是说,如果输出电压想要变高(或变低),负反馈回路总会阻止,强制其回到正常值。
    正反馈(Positive Feedback)是指当反馈信号与源信号有相同的极性时就发生的反馈。此时,回路响应会与发生变化的方向一致。显而易见不能达到输出的稳定,不能消除输出电压的改变,反而将变化趋势扩大了。
    当然,不会有人在线性稳压器件中使用正反馈。但是如果出现180°的相移,负反馈就成为正反馈了。
           
相位偏移(PHASE SHIFT)
      相位偏移就是反馈信号经过整个回路后出现的相位改变(Phase Change)的总和(相对起始点)。相位偏移,单位用度(Degrees)表示,通常使用网络分析仪(network analyzer)测量。理想的负反馈信号与源信号相位差180°(如图8:相位偏移示意图),因此它的起始点在-180°。在图7中可以看到这180°的偏置,也就是波型差半周。
 
      可以看到,从-180°开始,增加180°的相移,信号相位回到零度,就会使反馈信号与源信号的相位相同,从而使回路不稳定。


相位裕度(PHASE MARGIN)
     相位裕度(Phase Margin,单位:度),定义为频率的回路增益等 0dB(单位增益,Unity Gain)时,反馈信号总的相位偏移与-180°的差。一个稳定的回路一般需要20°的相位裕度。
    相位偏移和相位裕度可以通过波特图中的零、极点计算获得。


极点(POLES)
      极点(Pole)定义为增益曲线(Gain curve)中斜度(Slope)为-20dB/十倍频程的点(图9:波特图中的极点)。每添加一个极点,斜度增加20dB/十倍频程。增加n个极点,n ×(-20dB/十倍频程)。每个极点表示的相位偏移都与频率相关,相移从0到-90°(增加极点就增加相移)。最重要的一点是几乎所有由极点(或零点)引起的相移都是在十倍频程范围内。
注意:一个极点只能增加-90°的相移,所以最少需要两个极点来到达-180°(不稳定点)。
 
      
零点(ZEROS)
      零点(Zero)定义为在增益曲线中斜度为+20dB/十倍频程的点(如图10:波特图中的零点)。零点产生的相移为0到+90°,在曲线上有+45°角的转变。必须清楚零点就是“反极点”(Anti-pole),它在增益和相位上的效果与极点恰恰相反。这也就是为什么要在LDO稳压器的回路中添加零点的原因,零点可以抵消极点。
 

波特图分析
    用包含三个极点和一个零点的波特图(图11:波特图)来分析增益和相位裕度。
 
    假设直流增益(DC gain)为80dB,第一个极点(pole)发生在100Hz处。在此频率,增益曲线的斜度变为-20dB/十倍频程。1kHz处的零点使斜度变为0dB/十倍频程,到10kHz处斜度又变成-20dB/十倍频程。在100kHz处的第三个也是最后一个极点将斜度最终变为-40dB/十倍频程。
      图11中可看到单位增益点(Unity Gain Crossover,0dB)的交点频率(Crossover Frequency)是1MHz。0dB频率有时也称为回路带宽(Loop Bandwidth)。
      相位偏移图表示了零、极点的不同分布对反馈信号的影响。为了产生这个图,就要根据分布的零点、极点计算相移的总和。在任意频率(f)上的极点相移,可以通过下式计算获得:
          极点相移 = -arctan(f/fp)                              (6)
在任意频率(f)上的零点相移,可以通过下式计算获得:
          零点相移 = -arctan(f/fz)                              (7)
    此回路稳定吗?为了回答这个问题,我们根本无需复杂的计算,只需要知道0dB时的相移(此例中是1MHz)。
      前两个极点和第一个零点分布使相位从-180°变到+90°,最终导致网络相位转变到-90°。最后一个极点在十倍频程中出现了0dB点。代入零点相移公式,可以计算出该极点产生了-84°的相移(在1MHz时)。加上原来的-90°相移,全部的相移是-174°(也就是说相位裕度是6°)。由此得出结论,该回路不能保持稳定,可能会引起振荡。


NPN 稳压器补偿
      NPN 稳压器的导通管(见图1)的连接方式是共集电极的方式。所有共集电极电路的一个重要特性就是低输出阻抗, 意味着电源范围内的极点出现在回路增益曲线的高频部分。
      由于NPN稳压器没有固有的低频极点,所以它使用了一种称为主极点补偿(dominant pole compensation)的技术。方法是,在稳压器的内部集成了一个电容,该电容在环路增益的低频端添加了一个极点(图12:NPN稳压器的波特图)。
 
    NPN稳压器的主极点(Dominant  Pole), 用P1点表示, 一般设置在100Hz处。100Hz处的极点将增益减小为-20dB/十倍频程直到3MHz处的第二个极点(P2)。在P2处,增益曲线的斜率又增加了-20dB/十倍频程。P2点的频率主要取决于 NPN 功率管及相关驱动电路, 因此有时也称此点为功率极点(Ppower pole)。另外,P2点在回路增益为-10dB处出现,也就表示了单位增益(0dB)频率处(1MHz)的相位偏移会很小。
      为了确定稳定性,只需要计算0dB频率处的相位裕度。
      第一个极点(P1)会产生-90°的相位偏移,但是第二个极点(P2)只增加了-18°的相位偏移(1MHz处)。也就是说0dB点处的相位偏移为-108°,相位裕度为72°,表明回路非常稳定。
      需要两个极点才有可能使回路要达到-180°的相位偏移(不稳定点),而极点P2又处于高频,它在0dB处的相位偏移就很小了。
 
LDO 稳压器的补偿
      LDO稳压器中的PNP导通管的接法为共射方式(common emitter)。它相对共集电极方式有更高的输出阻抗。由于负载阻抗和输出容抗的影响在低频程处会出现低频极点(low-frequency pole)。此极点,又称负载极点(load pole),用Pl表示。负载极点的频率由下式计算获得:
        F(Pl) =1 / (2π × Rload × Cout)                        (8)
       从此式可知,LDO不能通过简单的添加主极点的方式实现补偿。为什么? 先假设一个5V/50mA的LDO稳压器有下面的条件,在最大负载电流时,负载极点(Pl)出现的频率为:
   Pl = 1 / (2π × Rload × Cout)=1/(2π × 100 × 10-5)=160Hz (9)
    假设内部的补偿在1kHz处添加了一个极点。由于PNP功率管和驱动电路的存在,在500kHz处会出现一个功率极点(Ppwr)。
    假设直流增益为80dB。在最大输出电流时的负载阻值为RL=100Ω,输出电容为Cout =10uF。
    使用上述条件可以画出相应的波特图(如图13:未补偿的LDO增益波特图)。
 
      可以看出回路是不稳定的。极点PL和P1每个都会产生-90°的相移。在0dB处(此例为40kHz),相移达到了-180°为了减少负相移(阻止振荡),在回路中必须要添加一个零点。一个零点可以产生+90°的相移,它会抵消两个低频极点的部分影响。
      因此,几乎所有的LDO都需要在回路中添加这个零点。该零点一般是通过输出电容的等效串联电阻(ESR)获得的。


使用 ESR 补偿 LDO
        等效串联电阻(ESR)是电容的一个基本特性。可以将电容表示为电阻与电容的串联等效电路(图14:电容器的等效电路图)。

       输出电容的ESR在回路增益中产生一个零点,可以用来减少负相移。零点处的频率值(Fzero)与ESR和输出电容值密切相关:
           Fzero = 1 / (2π × Cout × ESR)                    (10)
    再看上一节的例子(图13),假设输出电容值Cout =10uF,输出电容的ESR = 1Ω。则零点发生在16kHz。图15的波特图显示了添加此零点如何使不稳定的系统恢复稳定。
     
      回路的带宽增加了,单位增益(0dB)的交点频率从30kHz移到了100kHz。到100kHz处该零点总共增加了+81°相移(Positive Phase Shift)。也就是减少了极点PL和P1造成的负相移(Negative Phase Shift)。 极点Ppwr处在500kHz,在100kHz处它仅增加了-11°的相移。累加所有的零、极点,0dB处的总相移为-110°。也就是有+70°的相位裕度,系统非常稳定。
      这就解释了选择合适ESR值的输出电容可以产生零点来稳定LDO系统。 


ESR 和稳定性
      通常所有的LDO都会要求其输出电容的ESR值在某一特定范围内,以保证输出的稳定性。 LDO制造商会提供一系列由输出电容ESR和负载电流(Load Current)组成的定义稳定范围的曲线(图16:典型LDO的ESR稳定范围曲线),作为选择电容时的参考。
 
    要解释为什么有这些范围的存在,我们使用前面提到的例子来说明ESR的高低对相位裕度的影响。
        
高ESR
        同样使用上一节提到的例子,我们假设10uF输出电容的ESR增加到20Ω。这将使零点的频率降低到800Hz(图17:高ESR引起回路振荡的波特图)。      
 
    降低零点的频率会使回路的带宽增加,它的单位增益(0Db)的交点频率从100kHz 提高到2MHz。 带宽的增加意味着极点 Ppwr 会出现在带宽内(对比图15)。分析图17波特图中曲线的相位裕度,发现如果同时拿掉该零点和P1或PL中的一个极点,对曲线的形状影响很小。也就是说该回路受到-90° 相移的低频极点和发生-76° 相移的高频极点Ppwr共同影响。
      尽管有 14° 的相位裕度,系统可能会稳定。但很多经验测试数据显示,当ESR >10Ω时,由于其它的高频极点的分布(在此简单模型中未表示)很可能会引入不稳定性。


低ESR
       选择具有很低的ESR的输出电容,由于一些不同的原因也会产生振荡。继续沿用上一节的例子,假定10uF输出电容的ESR只有50mΩ,则零点的频率会变到320kHz(图18:低ESR引起回路振荡的波特图)。
 
      不用计算就知道系统是不稳定的。两个极点P1和PL在0dB处共产生了-180°的相移。如果要系统稳定,则零点应该在0dB点之前补偿正相移。然而,零点在320kHz处,已经在系统带宽之外了,所以无法起到补偿作用。
     
输出电容的选择
      综上,输出电容是用来补偿LDO稳压器的,所以选择时必须谨慎。基本上所有的LDO应用中引起的振荡都是由于输出电容的ESR过高或过低。
      LDO的输出电容,通常钽电容是最好的选择(除了一些专门设计使用陶瓷电容的LDO,例如:LP2985)。测试一个AVX的4.7uF钽电容可知它在25℃时ESR为1.3Ω,该值处在稳定范围的中心(图16)。
      另一点非常重要,AVX电容的ESR在-40℃到+125℃温度范围内的变化小于2:1。铝电解电容在低温时的ESR会变大很多,所以不适合作LDO的输出电容。
      必须注意大的陶瓷电容(≥1uF)通常会用很低的ESR(<20mΩ),这几乎会使所有的LDO稳压器产生振荡(除了LP2985)。如果使用陶瓷电容就要串联电阻以增加ESR。大的陶瓷电容的温度特性很差(通常是Z5U型),也就是说在工作范围内的温度的上升和下降会使容值成倍的变化,所以不推荐使用。


准LDO补偿
      准LDO(图3)的稳定性和补偿,应考虑它兼有LDO和NPN稳压器的特性。因为准LDO稳压器利用NPN导通管,它的共集电极组合也就使它的输出极(射极)看上去有相对低的阻抗。
      然而,由于NPN的基极是由高阻抗PNP电流源驱动的,所以准LDO的输出阻抗不会达到使用NPN达林顿管的NPN稳压器的输出阻抗那样低,当然它比真正的LDO的输出阻抗要低。
      也就是说准LDO的功率极点的频率比NPN稳压器的低,因此准LDO也需要一些补偿以达到稳定。当然了这个功率极点的频率要比LDO的频率高很多,因此准LDO只需要很小的电容,而且对ESR的要求也不很苛刻。
      例如,准LDO LM1085可以输出高达3A的负载电流,却只需10uF的输出钽电容来维持稳定性。准LDO制造商未必提供ESR范围的曲线图,所以准LDO对电容的ESR要求很宽松。


低ESR的LDO 
       国半(NS)的两款LCO,LP2985和LP2989,要求输出电容贴装象陶瓷电容一样超低ESR。 这种电容的ESR可以低到5~10mΩ。 然而这样小的ESR会使典型的LDO稳压器引起振荡(图18)。
      为什么LP2985在如此低ESR的电容下仍能够稳定工作? 国半在IC内部放置了钽输出电容来补偿零点。这样做是为了将可稳定的ESR的上限范围下降。LP2985的ESR稳定范围是3Ω到500MΩ,因此它可以使用陶瓷电容。未在内部添加零点的典型LDO的可稳定的ESR的范围一般为100mΩ-5Ω,只适合使用钽电容并不适合使用陶瓷电容。
      要弄清ESR取之范围上限下降的原因,请参考图15。上文提到,此LDO的零点已被集成在IC内部。因此外部电容产生的零点必须处在足够高的频率,这样就不能使带宽很宽。否则,高频极点会产生很大的相移从而导致振荡。 


使用场效益管(FET)作为导通管LDO的优点
      LDO稳压器可以使用P-FET(P沟道场效应管)作为导通管(图19:P沟道场效应管LDO内部结构框图)。为了阐述使用Pl-FET LDO 的好处,在PNP LDO(图2)中要驱动PNP功率管就需要基极电流。基极电流由地脚(ground pin)流出并反馈回反相输入电压端。因此,这些基极驱动电流并未用来驱动负载。它在LDO稳压器中耗损的功耗由下式计算:
            PWR(Base Drive)=Vin × Ibase                 (11)
 
    需要驱动PNP管的基极电流等于负载电流除以β值(PNP管的增益)。在一些PNP LDO稳压器中β值一般为15~20(与负载电流相关)。此基极驱动电流产生的功耗可不是我们期望的(尤其是在电池供电的低功耗应用中)。P沟道场效应管(P-FET)的栅极驱动电流极小,较好地解决这个问题。
    P-FET LDO稳压器的另一个优点,是通过调整场效应管(FET)的导通阻抗(ON-resistance)可以使稳压器的跌落电压更低。 对于集成的稳压器而言,在单位面积上制造的场效应功率管(FET power transistors)的导通阻抗会比双极型开关管(Bipolar ONP Devices)的导通阻抗低。这就可以在更小封装(Packages)下输出更大的电流。


 

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
我要评论
0
4
关闭 站长推荐上一条 /3 下一条