tag 标签: mosfets

相关博文
  • 热度 23
    2015-7-31 18:40
    2277 次阅读|
    0 个评论
    Autonomous, self-driving cars are gaining a lot of attention and even hype these days, typified by the Google car, which has been undergoing extensive road trials. Depending who you ask and which pundit you follow, these driverless cars will be a reality in a few years, or delayed far into the future, or somewhere in-between. Along with the time line, their level of presumed capability will also cover wide span, from handling any situation including dense urban traffic, to perhaps only more limited cases such as open-highway driving. What's in the autonomous car and what makes it work has been covered extensively in both the less-technical as well as technical media; two of the many examples are here and here . Whatever the eventual reality of the autonomous vehicle, one thing is for sure: they will require a lot of electrical power for all those high-profile sensors – radar, sonar, vision, and LIDAR (Light Detection and Ranging) are just a few  – and even more for the less-obvious but enormous computational MIPS needed to process the huge amounts of data from them.     You may be smart, but how much electrical power you need, how you get it, and how you dissipate the resultant heat is a mystery to me.   Yet despite the many stories on these vehicles, there is one important area where I feel pretty much in the dark. All the coverage I have seen or found via web searches is about the sensors, the signal processing, the algorithms, the user interface, and the control mechanisms – but how the car powers all of the electronics is a technical mystery. I have not seen any credible block diagrams for the power-supply subsystem or even basic numbers on how much electrical power is needed. Even with low-power design, I assume it's in the multi-kilowatt range – but how many? There are additional questions, of course. How does the power subsystem look in an all electric vehicle (EV) compared to one in a hybrid (HEV) or a conventional internal-combustion (IC) design? Further, any numbers on the power needed brings the inevitable closely related question: how do you dissipate all the heat that the supply (even if it is efficient) and the loads generate? Given that today's non-autonomous vehicles are straining to supply power to all their new electronics, some automakers are looking to supplement the long-established 12-V basic battery rail with a more-efficient 42-V system, see here (déjà vu flash-back: this is actually an idea which has come and gone, but may be coming again, as seen here and here ). I have seen press releases about individual components such as MOSFETs used in autonomous vehicles, but that's looking at a tree when I want to see the forest. Do you have any insight into the power subsystem requirements, implementation details, or thermal design of autonomous vehicles?  
  • 热度 14
    2014-4-18 13:07
    1237 次阅读|
    0 个评论
    最大限度降低器件和印刷电路板(PCB)的寄生电感和电容是重要的设计考虑因素,可减少不希望的噪声。要在不同应用中驱动快速开关超级结MOSFET,必须对器件寄生效应影响和PCB布局寄生效应影响都了解。设计适合快速开关超级结MOSFET的栅极驱动电路时有许多因素需考虑。关于最大限度减少不必要的噪声有几项主要准则。  在某些情况下,比如输入电压瞬变或短路,MOSFET所承受的高di/dt和dv/dt可能会导致开关特性异常或器件损坏。图1显示的是关断瞬态期间PFC电路中超级结MOSFET的振荡波形。器件和电路板中的寄生元件毫无疑问是引起不必要振荡和噪声的主要原因。在这种情况下,增大栅极电阻能够抑制峰值漏源极电压并防止由超级结MOSFET的引脚电感和寄生电容引起的栅极振荡。而且还能在导通和关断期间减缓电压上升速率(dv/dt)和电流上升速率(di/dt)。不利的是,额外的外部栅极电阻也会影响MOSFET中的开关损耗。随着工作开关频率增大,控制开关损耗就很重要了,因为器件必须达到目标应用所要求的最高效率。 图1. 使用超级结MOSFET的PFC电路的剧烈振荡波形 避免振荡的另一种重要方法是最大限度降低器件和电路板的电感。正确配置栅极驱动电路对于操作MOSFET的同时最大限度减少不必要噪声非常重要。有两种栅极驱动器可以考虑。‎(a)) 栅极驱动电路最适合快速可变导通和关断。尽管实施起来更为简单,但快速关断瞬态和较大的栅极关断环路仍可形成高di/dt,造成源极电感上的高压降(Ldi/dt)会引起栅极振荡。从而带来一些副作用,比如出现电压/电流尖峰或 EMI 性能恶化。另一种快速导通和快速关断的栅极驱动电路是‎(b)PNP晶体管关断栅极驱动电路。该更为有效的配置可最大限度降低较小栅极驱动环路中的源极电感,而且仍能实现快速关断。 要实现平衡,重要的是要具有优化的栅极驱动电路,因为功率MOSFET是栅极控制型器件。下列建议对于实现高效率(无电压尖峰)和低电磁干扰(因快速开关MOSFET产生)非常重要。  快速超级结MOSFET的布局准则概要 要实现超级结MOSFET的最佳性能,需要优化的布局 栅极驱动器和R g 必须尽可能地靠近MOSFET栅极引脚。 将电源 GND 和栅极驱动器 GND 分开。 最大限度降低PCB上的寄生电容C gd 和源极电感。 对于并联超级结MOSFET,必须采用对称布局。 通过增大R g 或使用铁氧体磁珠减缓dv/dt和di/dt    相关链接: 如需更多信息,请访问应用指南: AN-9005: 快速开关超级结MOSFET的驱动和布局设计 http://www.fairchildsemi.com/an/AN/AN-9005.pdf  有关功率因数校正、功率链分立器件功率损耗和分析(在线工具) http://www.fairchildsemi.com/support/design-tools/power-train-discrete-device-power-loss-and-analysis/
  • 热度 7
    2014-3-28 13:48
    1102 次阅读|
    0 个评论
    基于最近的趋势,提高效率成为关键目标,为了获得更好的EMI而采用慢开关器件的权衡并不值得。超级结可在平面MOSFET难以胜任的应用中提高效率。与传统平面MOSFET技术相比,超级结MOSFET可显著降低导通电阻和寄生电容。 导通电阻的显著降低和寄生电容的降低虽然有助于提高效率,但也产生电压(dv/dt)和电流(di/dt)的快速开关转换,形成高频噪声和辐射EMI。   为驱动快速开关超级结MOSFET,必须了解封装和PCB布局寄生效应对开关性能的影响,以及为使用超级结所做的PCB布局调整。主要使用击穿电压为500-600V的超级结MOSFET。在这些电压额定值中,工业标准TO-220、TO-247、TO-3P和TO-263是应用最广泛的封装。封装对性能的影响有限,这是因为内部栅极和源极绑定线长度是固定的。只有引脚的长度可以改变,以减少封装的源极电感。如图1(a)所示,10 nH的典型引线电感看起来不大,但这些MOSFET的di/dt可轻松达到500 A / µs! 假定di/dt为500A / µs,10nH引线电感上的电压为VIND = 5 V;而10nH引线电感的关断di/dt为1,000 A / µs,可产生VIND = 10 V的电压。大多数应用和设计都未考虑到此附加电感也会产生电压,但这一点不可忽视。以上简单计算显示,封装的总源极电感,即绑定线和引脚电感必须降低至可接受的数值。噪声的另一个来源是布局寄生效应。有两种可见的布局寄生效应: 寄生电感和寄生电容。1 cm走线的电感为6-10 nH,通过在PCB顶部添加一层并在PCB底部添加GND层,可降低此电感值。另一类型是寄生电容。图1(b)显示了布局中容性寄生效应的原理。寄生电容由两条相近走线之间或走线与另外一侧的地平面之间引起。另一种电容为器件和地平面间的电容。PCB 板两面上的两个并行走线能够增加电容,同时还能减少回路电感,从而减少电磁噪声辐射。下次设计需要超级结MOSFET时,请考虑这些布局提示。   相关链接: 如需更多信息,请访问SuperFET2 MOSFET登录页面。 http://www.fairchildsemi.com.cn/product-technology/superfet/   尝试我们最新的SuperFET2 MOSFET PSpice模型,看看对您有无帮助: http://www.fairchildsemi.com.cn/ShoppingExperience/action/redirectModel?type=modelfilename=FAIRCHILD_SUPERFET2_600.zip
  • 热度 18
    2014-2-25 14:59
    1850 次阅读|
    0 个评论
    由于现在对功率半导体和功率模块的节能有所要求,封装成为产品整体性能的一个重要考虑因素。各种封装普遍采用传统的引线键合方式。这是一种成熟、经济高效且灵活的工艺,目前已有经过验证的装配基础设施。然而,引线键合封装需要较多的源极导线才能降低导通电阻Rds(on)或提高功率密度,而增加源极导线数量会影响生产力及材料成本(金导线)。 为了满足提高产品性能的要求,条带技术更适合用于互连。铜条有不少优势。相比采用铜导线、金导线或铝带作为源极连线,铜条可极大地降低产品的总封装电阻。表1显示使用铜条后,导通电阻Rds(on)的改善情况,并将之与铝导线或铜导线互连相比;该例采用PQFN 5×6双通道非对称封装,用来填充LS FET的焊盘芯片尺寸。使用铜导线后,阻值增加63%, 而用铝导线增加43%。条带连接除了可以降低封装电阻,还能降低热阻和封装电感。夹片焊接产品结合了更低的热阻/电阻和封装源极电感性能,具有更高的额定电流能力和效率。 表 1: 铜导线、铝导线和铜条的导通电阻Rds对比 条带键合封装在条带顶部提供增加一个散热片的选项,也可使用厚条带进行双面散热,如下图所示。安装外部鳍状散热片后,在气流作用下(200 LPM),Dual Cool™封装改善20%的热性能。 就封装而言,铜条比铝导线焊接更为经济实惠。由于盘状薄夹片采取批量生产的方式制造,因此相比铜导线焊接,铜条的成本更低。 PQFN 5×5智能功率级Dual Cool封装 相关链接: 应用指南AN-9056 使用飞兆半导体 Dual Cool™ MOSFETs http://www.fairchildsemi.com.cn/an/AN/AN-9056.pdf Dual Cool™ 封装 PowerTrench® MOSFETs http://www.fairchildsemi.com.cn/Assets/zSystem/documents/collateral/productOverview/Dual-Cool-Packaged-PowerTrench-MOSFETs-Product-Overview.pdf Dual Cool™ 封装视频 http://bcove.me/hlkejgdw 有源封装 http://www.fairchildsemi.com.cn/package/  
相关资源
  • 所需E币: 0
    时间: 2020-9-26 19:08
    大小: 717.74KB
    上传者: LGWU1995
    三菱电机Mitsubishi_优化元胞设计和采用再氧化工艺的高性能4H-SiCMOSFETs
  • 所需E币: 0
    时间: 2020-9-21 19:12
    大小: 1.08MB
    上传者: LGWU1995
    三菱电机【论文】优化元胞设计和采用再氧化工艺的高性能4H-SiCMOSFETs
  • 所需E币: 4
    时间: 2019-12-27 21:13
    大小: 1.46MB
    上传者: 二不过三
    广泛的汽车应用范围的低导通电阻的MOSFETLeading-edgeAutomotivePowerMOSFETsNextGenerationMOSFETsforawiderangeofAutomotiveApplicationsLowon-resistanceMOSFETSforawiderangeofautomotiveapplicationsIntermediatelevelgatedriveN-channelenhancementmodeField-EffectTransistors(FETs)inindustry-standardpackagesusingadvancedTrenchMOStechnology.ThiswiderangeofdeviceshasbeendesignedandqualifiedtotheappropriateAECQ101standardforuseinhighperformanceautomotiveapplications.FeaturesandbenefitsApplicationsAECQ101compliant12VAutomotivesystemsLowconductionlossesduetoverylowon-stateresistanceStart-Stopmicro-hybridapplicationsSuita……
  • 所需E币: 4
    时间: 2019-12-27 21:13
    大小: 2.08MB
    上传者: quw431979_163.com
    powermosfetsforautomotiveapplicationsPowerMOSFETsforAutomotiveApplicationsPerformance,Quality,ReliabilityAutomotivePowerMOSFETsGlobalLeadershipinDiscretePowerMOSFETsforAutomotiveApplicationsAnin-depthunderstandingofautomotivesystemrequirementsandfocusedtechnicalcapabilityenablesNXPtoprovidepowersemiconductorsolutionsacrossawidespectrumofapplications.Fromdrivingasimplelamptothesophisticatedneedsofpowercontrolinengine,bodyorchassisapplications,NXPpowersemiconductorscanprovidetheanswertomanyautomotivesystempowerproblems.Byprovidingacompletetechnology,deviceandservicecapabilityNXPhelpsyoumeetthediverseandrigoroustechnicaldemandsoftoday’……
  • 所需E币: 5
    时间: 2019-12-28 23:50
    大小: 170KB
    上传者: rdg1993
    Thisapplicationnoteoutlinesaclearprinted-circuit-board(PCB)layoutforimplementingtheMAX8632integratedDDRpowersupply.……
  • 所需E币: 4
    时间: 2019-12-24 22:00
    大小: 44.72KB
    上传者: givh79_163.com
    P-channelMOSFETs(pFETs),thoughmoreexpensivethanpnptransistors,arefreeofthedissipationlossassociatedwithbasedriveinapnpcircuit.pFETsalsohavealowersaturationvoltageatlightloads(Figure1).Infact,thelowRDS(ON),logic-level,p-channelpowerMOSFETscurrentlyavailablecanregulate5Vfroma5.1Vbattery!Maxim>AppNotes>AmplifierandComparatorCircuitsVoltageReferencesKeywords:P-FET,linearregulator,lowdropout,p-channel,MOSFETs,amplifiers,comparatorJul09,1998APPLICATIONNOTE103pFETLinearRegulatorHasLowDropoutVoltageP-channelMOSFETs(pFETs),thoughmoreexpensivethanpnptransistors,arefreeofthedissipationlossassociatedwithbasedriveinapnpcircuit.pFETsalsohavealowersaturationvoltageatlightloads(Figure1).Infact,thelowRDS(ON),logic-level,p-channelpowerMOSFETscurrentlyavailablecanregulate5Vfroma5.1Vbattery!Figure1.Ap-channelMOSFET(Q1)allowsthislinearregulatortooperatewithVINtoVOUTdifferentialslowerthan100mV.ThiscapabilityletstheFigure2circuitderive5V±10%……
  • 所需E币: 5
    时间: 2019-12-24 21:51
    大小: 55.93KB
    上传者: 二不过三
    Abstract:Toprotectaudioamplifiersandotherautomotiveelectroniccircuitsintheeventofanaccidentaldirectconnectiontothecarbatteryvoltage,addthecircuitryshown(ashuntregulator,diodes,andann-channelMOSFETinserieswitheachaudiopath).Maxim>AppNotes>AmplifierandComparatorCircuitsAudioCircuitsAutomotiveCircuitProtectionKeywords:automotivevoltageprotection,dualn-channelMOSFETs,shuntregulators,classABamplifiersJan06,2011APPLICATIONNOTE4555CircuitGuardsAmplifierOutputsAgainstOvervoltageAbstract:Toprotectaudioamplifiersandotherautomotiveelectroniccircuitsintheeventofanaccidentaldirectconnectiontothecarbatteryvoltage,addthecircuitryshown(ashuntregulator,diodes,andann-channelMOSFETinserieswitheachaudiopath).AsimilarversionofthisarticleappearedintheJuly7,2007issueofEDNmagazine.Auniversalrequirementforautomotiveelectronicsisthatanydevicewithdirectconnectionstothewiringharnessmustbeabletowith……
  • 所需E币: 4
    时间: 2019-12-24 20:34
    大小: 73.18KB
    上传者: 978461154_qq
    Abstract:Thiscircuitletsyouprogramacurrentlimitwithoutusingmicrocontrollersordataconverters.Itconsistsofacharge-pumpvoltagedoubler(U1),acurrent-senseamplifier(U2),andtwon-channelMOSFETs.Thesense-resistorvaluedeterminesthemaximumcurrentlimit.Maxim>AppNotes>AmplifierandComparatorCircuitsPower-SupplyCircuitsKeywords:charge-pumpvoltagedoublers,current-senseamplifiers,n-channelMOSFETs,inrushcurrentNov05,2010APPLICATIONNOTE4501SimpleCurrentLimiterIsProgrammableAbstract:Thiscircuitletsyouprogramacurrentlimitwithoutusingmicrocontrollersordataconverters.Itconsistsofacharge-pumpvoltagedoubler(U1),acurrent-senseamplifier(U2),andtwon-channelMOSFETs.Thesense-resistorvaluedeterminesthemaximumcurrentlimit.AsimilarversionofthisarticleappearedintheMay18,2009issueofEETimesmagazine.Availableintegratedcircuitscanletyouprogramacurrentlimit,buttheygenerallyinvolvemicrocontrollersordataconve……
  • 所需E币: 5
    时间: 2019-12-24 20:34
    大小: 80.74KB
    上传者: 2iot
    Abstract:ThiscircuitexploitsallthepoweravailablefromaUSBportbydynamicallyadjustingtheamountofcurrentdeliveredtotheload,therebysiphoningarelativelyconstant(andmaximum)currentfromtheUSBport.Includedareacurrent-senseamplifier(MAX4173),voltagereference(MAX6129),andprecisionopamp(MAX4238).Maxim>AppNotes>AmplifierandComparatorCircuitsInterfaceCircuitsVoltageReferencesKeywords:USBports,USB-portpower,current-senseamplifiers,voltagereferences,opamps,n-channelMOSFETsJan05,2011APPLICATIONNOTE4563DynamicSiphonStealsCurrentfromUSBPortAbstract:ThiscircuitexploitsallthepoweravailablefromaUSBportbydynamicallyadjustingtheamountofcurrentdeliveredtotheload,therebysiphoningarelativelyconstant(andmaximum)currentfromtheUSBport.Includedareacurrent-senseamplifier(MAX4173),voltagereference(MAX6129),andprecisionopamp(MAX4238).AsimilarversionofthisarticleappearedintheDecmeber15,2006issueofEDNmagazine.USBportscanbeahandysourceof5Vpower.NotonlycanaUSBportpowera……
  • 所需E币: 3
    时间: 2019-12-24 18:34
    大小: 78.82KB
    上传者: quw431979_163.com
    摘要:该电路保持电源的负载,无论在电源电压瞬间短路或打开,包括低电流过压保护IC(MAX6495的工作),保护负载免受瞬态电压高达72V。Maxim>AppNotes>CircuitProtectionProtectionandIsolationKeywords:automotiveelectronics,overvoltageprotection,brownoutprotection,ride-throughcapability,MOSFETsDec22,2010APPLICATIONNOTE4550AutomotiveProtectionCircuit"RidesThrough"Supply-VoltageInterruptionsand72VTransientsBy:RonaldMoradkhanAbstract:Thiscircuitmaintainspowertotheloadregardlessofmomentaryshortsoropensinthesupplyvoltage,andincludesalow-currentovervoltage-protectionIC(MAX6495)thatprotectstheloadagainsttransientvoltagesupto72V.AsimilarversionofthisarticleappearedintheNovember25,2007issueofMachineDesignmagazine.Manyapplicationsinautomotiveelectronicsrequireasupplyvoltagethatremainsuninterrupt……
  • 所需E币: 5
    时间: 2019-12-24 18:34
    大小: 55.93KB
    上传者: 2iot
    摘要:为了保护音频放大器及其他汽车电子电路直接连接到汽车电池的电压,一个偶然的事件,添加所示的电路(并联稳压器,二极管,和n沟道MOSFET在音频路径与每个系列)。Maxim>AppNotes>AmplifierandComparatorCircuitsAudioCircuitsAutomotiveCircuitProtectionKeywords:automotivevoltageprotection,dualn-channelMOSFETs,shuntregulators,classABamplifiersJan06,2011APPLICATIONNOTE4555CircuitGuardsAmplifierOutputsAgainstOvervoltageAbstract:Toprotectaudioamplifiersandotherautomotiveelectroniccircuitsintheeventofanaccidentaldirectconnectiontothecarbatteryvoltage,addthecircuitryshown(ashuntregulator,diodes,andann-channelMOSFETinserieswitheachaudiopath).AsimilarversionofthisarticleappearedintheJuly7,2007issueofEDNmagazine.Auniversalrequirementforautomotiveelectronicsisthatanydevicewithdirectconnectionstothewiringharnessmustbeabletowith……
  • 所需E币: 5
    时间: 2019-12-24 18:32
    大小: 75.67KB
    上传者: 238112554_qq
    摘要:该电路保护汽车意外地接触到汽车的电池电压(16V最大)视频放大器,电压检测故障,并迅速打开功放和电池之间的连接。Maxim>AppNotes>CircuitProtectionVideoCircuitsKeywords:automotivecircuitprotection,videoDACs,digitalinverters,MOSFETsNov16,2010APPLICATIONNOTE4516SimpleCircuitProtectsAutomotiveVideoDriversfromOvervoltageAbstract:Thiscircuitprotectsautomotivevideoamplifiersfromaccidentalexposuretothecar'sbatteryvoltage(16Vmaximum),bysensingvoltagefaultsandquicklyopeningtheconnectionbetweenamplifierandbattery.AsimilarversionofthisarticleappearedintheMay20,2008issueofElectronicDesignmagazine.Inatypicalautomotivevideoapplication,thevideoDAC(fromarearcameraorDVDplayer,forexample)isfollowedbyalowpassreconstructionfilterandanamplifierth……