tag 标签: emc

相关帖子
相关博文
  • 热度 1
    2023-1-4 17:31
    441 次阅读|
    0 个评论
    在电子产品中,需要防护的电路主要是电源和信号,所处的位置不同其防护等级和防护方案也不同,介绍三种最常用的防护器件:TVS管,气体放电管、半导体放电管。 一、瞬态抑制二极管(TVS) 1、器件特性: TVS又称为瞬态抑制二极管,是半导体硅材料制造成特殊二极管,TVS与被防护电路并联使用。电路正常时TVS处于关断状态呈现高阻抗特性,当外界有浪涌冲击电压时能以nS量级的速度从高阻抗转变为低阻抗吸收浪涌功率,使浪涌电压通过其自身到地,从而保护电路不受侵害。其重要的特性就是相应迅速,作用时间短。 2、伏安特性: 如上图伏安特性曲线,Vc是钳位电压、Vrwm是最高工作电压,均是TVS选型中非常重要的参数。在设计选型时为了能够对被保护电路起到保护作用,同时又不能影响后级电路正常工作,Vrwm≥电路正常工作电压。这样电路正常工作时,TVS管处于截止状态,不对电路产生影响;Vc≤电路可承受的最高电压,不然二极管遇到瞬态高压导通后保持的钳位电压比后级电路可承受电压高会造成后级电路的损伤。如下是在元器件电商平台查到的DIODES的SMBJ5.0系列规格参数,可以看到不同型号的Vc和Vrwm是不同的,根据需求选型即可。 图片来源:华秋商城 3、典型应用: TVS管经常应用在485电路、232接口、USB接口、VGA接口等需要防静电以及热插拔端口。 如下是一个USB2.0接口典型的防护电路,主要对电源线、差分信号DM/DP进行防护,当从USB接口进来的瞬态高压,比如高达几千伏的静电耦合到信号线或电源线上时,会触发对应线路上TVS D1或D2或D3导通,将瞬间高压泄放到PGND,从而实现了对后级芯片的保护,防止几千伏的电压通过信号线或电源到后级芯片中去烧坏芯片。 二、半导体放电管(TSS) 1、器件特性 半导体放电管是一种小型化、快反应速度和高可靠性的电力电子半导体器件,它具有五层双端对称结构的设计。特点如下: 反应速度快,有比较低的残压; 可靠性高,一致性好; 使用寿命长,可长时间重复使用; 有比较低的结电容; 2、工作模式 半导体放电管的工作模式是:当外加电压低于其断态电压VDRM时,半导体放电管的漏电流极小,相当于开路;当外电压大于VDRM时,开始发生击穿;当外电压进一步加大后,半导体放电管的两端变成导通状态,相当于短路,可以泄放很大的电流;当外电压撤去以后,管子即可恢复断态。 如上半导体放电管的泄放示意图,A是模拟的雷击电压波形,B为半导体放电管拟制后的电压波形。 3、典型应用 半导体放电管主要应用在485电路、视频接口、XDSL、电话接口等需要防雷保护的接口。 如下是某DSL电话口使用半导体放电管TSS进行防护的案例。 三、气体放电管(GDT) 1、器件特性: 气体放电管,Gas discharge tube-GTD,由密封于气体放电管介质的一个或一个以上放电间隙组成的器件,用于保护设备或人身免遭高压电压的危害。普遍应用在电子产品中的是陶瓷气体放电管。主要特点是通流量大、结电容低、绝缘高等。主要是防止电子产品遭受雷击。 2、工作过程: 正常处于高阻态——(外界高压接入后)——进入辉光状态——进入弧光状态——(外界高压消失后)——进入辉光状态——恢复高阻态。 3、典型应用: 气体放电管主要应用在AC电源、DC电源接口、485电路、视频接口、XDSL、以太网接口等需要防雷保护的接口。 四、TVS、TSS、GDT三者差异 1、应用领域: TVS更多应用于电压较低的接口以及直接针对线路板中重点IC进行保护。比如特别是对IC的ESD防护。 TSS更多应用于电信设备中出现雷击和包含交流的瞬态现象的二级保护,比如电话、传真机、调制解调器、程控交换与网络设备,以及xDSL等模拟和数字线路。 GDT主要应用在通信产品、工业产品、监护仪/超声等医疗设备的电源口、RS485、网口、光口;消费电子类如机顶盒/电子玩具等的AC电源口、同轴口;电视机/数码相机等的AC 电源口、RS485/HDMI。 2、电压等级划分: TVS更多应用于30V以下环境,大多数IC芯片端口集成的二极管只能抵御不超过2KV的ESD。而TVS器件重要指标是所能抑止的静电电压如15KV(空气静电放电电压)、8KV(接触静电放电电压)。 TSS更多应用于50V以上环境,典型应用有200V的应用于通信线路;58V的应用程控交换机二次保护电路等。 GDT一般应用在70V-3600V ,主要是防护雷击。 3、其他对比 通流量:TVS < TSS < GDT 结电容:GDT < TSS < TVS 响应时间:TVS < TSS < GDT
  • 热度 1
    2022-9-18 22:56
    245 次阅读|
    0 个评论
    【EMC基础篇②】噪声的根源和种类,追踪看不见的噪声 今后预计还会不断出现各种先进技术,电信号的传导也需要达到与之相符的高速大容量。而且,这些信号还必须保证高安全性和可靠性。 无现金支付 (手机支付)、可优化暖气和照明等耗电量的智能家居、电动汽车和自动驾驶技术、搭载AI画面识别技术的自动安检设备和机器人——我们周围的环境正发生急速的变化。为这些技术提供支持的正是大量的电信号传导。今后预计还会不断出现各种先进技术,电信号的传导也需要达到与之相符的高速大容量。而且,这些信号还必须保证高安全性和可靠性。 实际上,电信号和噪声都是电磁能量,因此电子化生活越是便利,电子设备就越需要噪声对策。 噪声的两种类型:传导噪声和辐射噪声 我们周围的电气电子设备多少都算是噪声的产生源,看不见的噪声与热量有类似之处。众所周知,热的移动分为传导、对流、辐射三种。保温瓶的内部是真空的双层构造,这是为了防止空气的热传导和对流。不过,辐射热属于电磁波 (红外线),即使真空也无法阻断。因此,杯子里面会镀上银胆,反射红外线,提高保温效果。 作为电磁能量,噪声也根据传递方式大致分为传导噪声和辐射噪声。传导噪声通过电源线、信号线、印刷电路板的电路等,与信号一起移动。辐射噪声无需介质,以电磁波形式飞散。 传导噪声的入侵线路相对比较明确,但和信号类似,难以识别。电信号一般会以电压变化的方式传导,但噪声也是这种变化的一部分,会与电信号融合。 电路板和地面间的静电结合,以及线路间的电磁结合会成为噪声的传输路径。此外,电路板若直接存在电势差,就会形成大型的电流循环,成为噪声传输路径。并且,传导噪声还会变为辐射噪声,辐射噪声也会变为传导噪声。 电脑内部充满了无用电磁波 辐射噪声比传导噪声还要令人难以捉摸。即使没有线缆连接,辐射噪声也会找机会侵入其它电子设备,系统内的噪声会变为系统间的噪声,扩大影响范围。在高频电流的电路中,线路的电感等成分会产生无用的电磁波,这也属于噪声。由于电磁波的辐射量与频率的平方成正比,所以时钟频率高达Ghz的电脑等设备等成为了辐射噪声的主要产生源之一。 上一篇推文中也提到过,噪声对策的基本方式包括 (1) 屏蔽 (2) 反射 (3) 吸收 (4) 旁路。电脑本身包裹的金属外壳,就是为了防止无用电磁波的泄露。不过,CD和DVD的取出口、散热通气口、金属板的接缝处等位置会形成“窗口”,无用电磁波会从此逃出。此外,与周围设备连接的线缆哪怕掉了一块皮,也会形成天线,辐射无用电磁波。电信号和噪声本质上是相同的东西。如果没有在产生源采取对策,之后就无从挽救了。如果只是“临阵磨枪”,反而会“赔了夫人又折兵”,让噪声进一步增加。 兼顾生成噪声和侵入噪声的EMC 噪声也会通过静电结合与电磁结合的方式扩大。有电流的导体附近若存在其它导体,就会构成看不见的 电容 器 (浮游容量),并产生诱导电压。这称为静电结合。高频电流流动时,其导体也会随之产生电压变化,造成辐射噪声和传导噪声,对设备造成负面影响。 买电子元器件现货上唯样商城 电磁结合是磁场引发的诱导现象。交流电路的旁边若有其它电路,产生的磁场变化就会导致电流。这可以根据 法拉 第电磁诱导法则推导,和 变压器 是相同的原理。磁场的时间性变动越激烈、两个电路循环的面积越大、两个电路越接近,电磁结合所诱发的噪声电压就越大。连接印刷电路板的导线采用双绞线的原因是,导线产生的磁场影响会因此被减弱。双绞线构成的一个个小圈所产生的磁场会交替地呈相反方向,让磁场抵消,从而减少辐射噪声。 电场变化产生磁场,磁场变化产生电场 环状电场和磁场交替连接,跨越空间的话就形成了电磁波 在电路元件高度集成的电子设备中,静电结合和电磁结合会复杂地交错,线路的信号因此就能轻松地侵入其它线路。这称为“串扰”,随着电子设备的小型化,电路板上的噪声问题也开始激增。为了减少噪声影响,人们常采用屏蔽线。屏蔽线确实对静电结合与电磁结合都有效,但在此之前,需要在电路配置上花费工夫,例如让电压、电流变动大的导线远离,让导线交叉而不并行等。 电子设备是不可能根除噪声的。正因如此,兼顾生成噪声和侵入噪声对策的EMC方案变得愈发重要了起来。 那么,噪声的模式与行为有哪些? 为何Earth与Ground的区别很重要?我们将在下一篇推文中继续讲解。
  • 热度 2
    2022-9-18 22:39
    286 次阅读|
    0 个评论
    【EMC基础篇①】噪声是什么?EMC是什么?噪声损害是电子社会的现代病 电脑的通信错误、手机通话突然断开……您有过类似的经验吗?我们周围充斥着噪声,它们会通过各种线路侵入电子设备,引发故障。那么,这些看不见的噪声的真身是什么? 本周为您带来3篇关于电子噪音及EMC对策的科普文章 ,希望有助于您了解其基础知识。 噪声是什么? 噪声 (Noise) 一般是指不需要的声音或信息,尤其是电气通信领域涉及较多,杂音、电波干扰导致的画面错乱等都属于噪声。电子设备泄漏的电磁波被其它电子设备接收的话,也会产生噪声。 噪声分为自然噪声和人工噪声。自然噪声的产生源是落雷、空中放电、宇宙射线等。人工噪声的产生源是电子设备。电子设备分为广播发信器等有意发射电磁波的类型、收音机和电视等从内部泄漏电磁能量的类型,以及电动清扫机和工具等使用时会随之产生电磁波的类型。 汽车收音机在火车道口会发出杂音,原因是火车的缩放仪和电线间会产生电火花。在收音机天线旁点着电子打火机的话,会听到扬声器发出嗡的杂音,这是因为放电火花产生了噪声电波,雷放电引发通信干扰也是因为相同道理。马可尼发明的早期无线电设备利用高压放电火花产生的能量来发送摩尔斯电码的点线,当然,当时没有收音机和电视,因此也没有电子设备会受到干扰,但在如今就会成为恶性的电波公害。 电子设备的噪声问题并不能轻松解决。噪声问题的难点在于,它和电信号一样,都是电磁能量。如果某个系统需要的电磁能是其它系统不需要的,便会成为噪声,因此电子设备必定伴随着噪声。它们会经由电源线和信号线,或变为电磁波跨越空间,引发电子设备故障和性能下降。 EMS对策可同时抑制生成噪声和侵入噪声 随着微电子和数字技术的迅速发展,电路集成化和信号高频、低电流化逐步推进,电子设备即使遭遇微弱的噪声也会受到影响。噪声干扰有时会导致车辆控制故障、工业机器人故障等严重问题。 电脑和 游戏机 、微波炉等家用电子设备自身也会发出各种噪声,影响其他设备。对于医疗设备和心脏起搏器来说,手机发出的电波也属于重大噪声。噪声问题的特点在于,噪声干扰的受害者同时也会成为加害者。 买电子元器件现货上唯样商城 因此电子设备就同时需要具备防止自身产生噪声的EMI (电磁干扰:Electro Magnetic Interference) 对策和防止自身受到影响的EMS (电磁敏感性: Electro Magnetic Susceptibility) 对策。这就叫做EMC (Electromagnetic Compatibility),即电磁兼容性。简单来说,就是需要同时采取措施应对Emission (发射) 问题和Immunity (免疫) 问题,即应对生成噪声和侵入噪声,兼顾两方面的方案就叫做EMC。 TDK 整体解决方案可解决噪声问题 噪声干扰可以说是电子社会的慢性现代病,对症疗法根本解决不了问题。若要防止生病,平时就需要注意保健和卫生,提高抵抗力。电子设备也是一样,噪声对策存在4种基本方式: (1)屏蔽(2)反射(3)吸收(4)旁路 这叫做“EMC的四要素”,各种EMC对策元件就是据此来因地制宜的。 我们需要在各区域采取电磁屏蔽措施,在 接口 处使用各种 滤波器 。并且,对区域内产生的噪声采取合适的EMC对策。随着IoT的发展,全球化网络社会中有无数电子设备相互连接。如果不解决噪声问题,电子社会的根基就会崩溃。 在电子设备的构思、设计、试制、量产阶段,TDK的整体解决方案都会根据实现需求,提供强有力的噪声对策支持。下一篇推文将为您讲解噪声的根源和种类,以及如何追踪看不见的噪声。若您有兴趣的话,请继续阅读哦!
  • 热度 4
    2022-6-30 15:41
    758 次阅读|
    0 个评论
    第21篇 EMC计算方法和EMC仿真(6) 辐射抗扰度(RI)的试行计算方法 大家好!我是ROHM的稻垣。 第21篇是磁兼容性(EMC)的计算方法和仿真系列的第6篇,我们将介绍辐射抗扰度(RI: Radiated Immunity)的试行计算方法。在车载电子产品的电磁兼容性(EMC)相关的“ISO 11452-2标准中,称为 ALSE法(Absorber-lined shielded enclosure)”。 该方法是将车载蓄电池、线路阻抗稳定网络、线束、DUT(测试对象)等配置在基准接地面上,从距离DUT(测试对象)1米处的天线施加电磁噪声(电场),然后判断DUT是否发生误动作。CISPR25标准的ALSE法是观测来自线束等的辐射抗扰度,而ISO 11452-2标准的ALSE法则是观测针对线束等的辐射抗扰度,所以两者的现象是相反的。 关于预测计算,如果环境是可以通过CISPR25标准ALSE法进行计算的环境,那么就需要更改一些设置,但我认为CAD等数据几乎可以直接使用。计算对象除上述项目外,还包括天线信号源(电场)、EMC对策元器件(此处为电容元件C)、DUT(LSI模型,无源器件)、合规性判断装置等。 在本文中,我们将结合使用电磁场分析和电路分析进行计算。计算的大致思路是通过电磁场分析,根据天线的电场强度计算出与线束相连接的印刷电路板(PCB)的感应电压。根据该感应电压和到达DUT(LSI引脚)的电压,通过电路分析判断是否存在误动作。简而言之,由电磁场分析负责辐射系统(在空气中传播信号的部分),由电路分析负责传导系统(在导线中传输信号的部分)。 电磁场分析(MoM法)的CAD数据和计算结果示例 车载蓄电池、线路阻抗稳定网络、线束、DUT的描述示例 下面我按照顺序来逐一讲解。在试行计算中,分两个阶段进行处理,第一阶段的IB(误动作阈值)模型提取(Extraction)和第二阶段的预测计算(Prediction)分别使用shell脚本来自动完成。第一阶段IB(误动作阈值)模型提取(Extraction)的计算步骤如下。 ■第一阶段:IB(误动作阈值)模型提取(Extraction) ① 首先,根据上述计算对象制作计算电路图,即直接连接测试电路使其成为计算电路的示意图。电磁场分析的电路图参考上图即可。电路分析的电路图与IEC 62132-4标准DPI法(第19篇)中使用的电路图几乎相同。 ② 在这个试行计算中,希望将测试频率范围200MHz~1GHz、电场强度200V/m用作限值。由于Pass/Fail的判定就是测试结果,所以与 第20篇 ISO 11452-4标准HE法(BCI 法)一样,将Pass设置为200V/m,将Fail设置为100V/m,并将其用作预测计算所使用的实测值。将Pass/Fail的实测判定结果转换为数值并用于计算。 ③ 将②中创建的电场强度(所有测试频率)作为电磁场分析的天线信号源(电场)施加,并计算在装有DUT(测试对象)的印刷电路板(PCB)上感应的电压值。 ④ 接下来,通过电路分析(瞬态分析,所有测试频率)计算到达印刷电路板(PCB)上的DUT(LSI引脚)的电压,并将其用作IB(误动作阈值)模型。如下图所示,误动作的电压阈值按一定周期波动的线束特性在图中得到了很好的体现。另外,在这个阶段,需要计算出“电场强度与感应电压的相关系数”。这样,根据实测值自动生成计算机模型,将非常有助于“缩短计算时间”和“提高计算精度”。 IB(误动作阈值)模型的计算示例 第二阶段的预测计算(Prediction)步骤如下: ■第二阶段:IB(误动作阈值)模型提取(Extraction) ⑤ 创建电路分析所用的预测计算用电路。与IB(误动作阈值)模型提取电路之间的区别在于添加了误动作判定器(比较器)。通过误动作判定器(比较器)对到达LSI的电压值和IB(误动作阈值)进行比较。 ⑥ 首先,将电压噪声信号源设置为衰减振动波形并进行电路分析(瞬态分析),即可获得比如LSI从误动作状态转变为非误动作状态的情况。在所有测试频率重复该步骤。 ⑦ 在衰减振动波形中获得发生误动作的电压值,就可以根据之前计算出的“电场强度与感应电压的相关系数”计算出发生误动作的电场强度。这就是所要的预测计算值。通过使用相关系数,可以省略电磁场分析,从而可以缩短计算时间。 ⑧ 左下图为使用与EMC对策前的IB(误动作阈值)模型提取电路相同的电路进行预测计算后的曲线图。实测值与计算值高度一致! ⑨ 在EMC对策电路中,通过电路分析添加了电容元件C,以降低到达DUT(LSI引脚)的电压噪声。当时的预测计算结果如右下图所示。如果计算值达到200V/m以上,则表明该值应该是符合标准的预测计算值。如果仔细观察,可以看出在200MHz~220MHz附近需要再采取一些EMC措施,而更高频段则无需EMC措施。 左:IB(误动作阈值)模型创建电路的预测计算示例 (实测值与计算值一致,黑色:实测值,红色:计算值,蓝绿色:限值) 右:EMC对策电路(添加电容元件C时)的预测计算示例  (黑色:实测值,红色:计算值,蓝绿色:限值) 如上所述,即使使用普通的电磁场分析工具和电路分析工具,通过将计算结果自动保存为文本文件(ASCII)并通过(shell)脚本传递,就可以相对容易地实现设计自动化和验证自动化。 感谢您阅读本文。 <书籍参考页码> 《LSI的EMC设计》,科学信息出版株式会社,2018年2月第一版,ISBN978-4-904774-68-7。 ◆辐射抗扰度(RI)计算验证: 第6章 通过现象验证半导体集成电路的电磁兼容性(2) pp.160~164 来源:rohm
  • 2022-4-26 17:41
    500 次阅读|
    0 个评论
    想介绍一下电磁兼容性(EMC)的计算方法和仿真系列中的辐射发射(CE: Radiated Emission)的试行计算方法。该方法是与车载产品的电磁兼容性(EMC)特性有关的“CISPR25标准ALSE法”。 CISPR是IEC的下属组织国际无线电干扰特别委员会(法语:Comité international spécial des perturbations radioélectriques)的缩写。ALSE法是“Absorber-Lined Shielded Enclosure”的缩写,是一种测量从DUT(测试对象:半导体集成电路(LSI))和线束等辐射出的电磁噪声的方法。 计算对象包括车载蓄电池(Battery)、人工电源网络(AN)、线束、DUT(测试对象)、接地层等。计算概念基于IEC 62433标准,支持数据同化(Data Assimilation),支持降噪(Noise Reduction)。分析方法为电路分析、电磁场分析和数值分析。 接下来我按照顺序逐一讲解。在试行计算中,分两个阶段进行处理,优化(Optimization)和预测计算(Prediction)分别使用shell脚本来自动化处理。第一阶段的优化(Optimization)按照以下步骤进行计算: ① 针对半导体集成电路(LSI)的电源电流和负载电流,通过PWL(Piecewise Linear,分段线性)波形创建IA模型(电磁干扰模型)。这一步通过电路分析(瞬态分析)来获取数据。 ② 由于使用数据同化技术,因此可以获取没有实施EMC措施状态下的CISPR25标准ALSE法的测量值。 ③ 对①IA模型(PWL波形)和②测量值都进行降噪处理(上限包络处理)。这一步通过数值分析来获取数据。 ④ 在SPICE电路网中描述车载蓄电池(Battery)和人工电源网络(AN),将线束和接地层作为电磁场分析的计算对象,创建CAD数据。 ⑤ 通过电磁场分析(MoM法:矩量法)来计算③和④,可以求得1个频率的辐射发射值(电场:dBµV/m)。 ⑥ 到此为止只是计算值,因此通过计算与③中测量值之间的差异来校正计算值。 ⑦ 对所需频率(例如开关频率的N次谐波)重复相同的计算,将各瞬态分析的结果创建为曲线图(频率轴),并绘制限值(与AC分析结果格式相同)。然后,优化(Optimization)的计算结果显示出计算值与测量值几乎是完全一致的状态。 第二阶段的预测计算(Prediction)按照以下步骤进行计算: ⑧ 获取已实施EMC措施的半导体集成电路(LSI)的IA模型(PWL波形)。其目的是计算和预测在重新设计硅芯片或更改应用电路时电源电流和负载电流的变化等因素对减少辐射发射(RE)有怎样的效果。 ⑨ 对这个⑧IA模型(PWL波形)进行降噪处理(上限包络处理)。 ⑩ 将③中的IA模型(PWL波形)替换为⑧中的IA模型(PWL波形),求1个频率的辐射发射值(电场:dBµV/m)。 ⑪ 使用优化(Optimization)⑥中求得的差值来校正⑩辐射发射的计算值。 ⑫ 对多个频率进行与⑦相同的计算。根据该结果,即可判断预测计算(Prediction)是否符合“CISPR25标准ALSE法”。 以上对计算方法进行了简要说明,下面给出了一些主要步骤的图示。 电磁场分析(MoM法)的CAD数据和计算结果示例 车载蓄电池、人工电源网络、线束、DUT的描述示例 优化(Optimization)结果,未实施EMC措施的示例 (黑色:测量值,红色:计算值,蓝、绿、黄:极限值) 预测计算(Prediction)结果,实施了EMC措施的示例 (黑色:测量值,红色:计算值,蓝、绿、黄:极限值) 在实际的设计现场,在半导体集成电路(LSI)的电路设计过程中,时间非常紧张,很难给EMC测量验证和EMC计算预测上分配大量时间。对此,通过使用相对简单的计算模型,可以缩短计算时间,同时,通过与测量值进行对比和整合,还可获得实用的计算精度。此外,通过(shell)脚本,可在后台运行电磁场分析和数值分析,也无需复杂的操作。硬件方面也不需要特别高级的电脑(在本文的试行计算示例中,CPU:约15min,MEM:100MB以下)。还有一种方法是进行详细的设备建模,并利用超级计算机等设备充分进行电磁场分析。这些都是行之有效的方法,但如果您专攻半导体集成电路(LSI),我认为类似的试行计算也不失为一种好方法。 感谢您阅读本文。 <书籍参考页码> 《LSI的EMC设计》,科学信息出版株式会社,2018年2月第一版,ISBN978-4-904774-68-7。 辐射发射(RE)仿真的简介:第6章 通过现象验证半导体集成电路的电磁兼容性(2) p.153~ 来源:techclass.rohm
相关资源