tag 标签: 抗干扰

相关博文
  • 2024-9-25 12:18
    98 次阅读|
    0 个评论
    1.屏蔽罩定制的作用 屏蔽罩多见于模组,主要是因为模组上有GPS,BT,Wifi,2G/3G/4G/5G等多种无线通信电路,有的如敏感的模拟电路,DC-DC开关电源电路,一般都需要用屏蔽罩隔离, 一方面是为了不影响其他电路,另一方面是防止其他电路影响自己 。 这是其中一个作用,防止电磁干扰;屏蔽罩另外一个作用是防止撞件,PCB SMT后会进行分板,一般相邻板子之间需要隔开,防止离得太近,在后续的测试或者其他运输过程中导致撞件。 2.屏蔽罩的材料 屏蔽罩的原材料多种多样,通常包括洋白铜、不锈钢、马口铁等。在当前的市场环境下,大多数屏蔽罩采用的是洋白铜。 洋白铜 :其屏蔽效果相对来说略逊一筹。洋白铜质地较为柔软,这使得它在加工和使用过程中具有一定的便利性。然而,洋白铜的价格要高于不锈钢。值得一提的是,洋白铜易于上锡,这一特性为其在电子设备中的应用提供了一定的优势。 不锈钢 :不锈钢的屏蔽效果良好,能够有效地阻挡外界电磁干扰,保障设备的正常运行。同时,不锈钢具有较高的强度,能够承受一定的外力冲击和挤压。在价格方面,不锈钢处于适中的水平。但需要注意的是,不锈钢上锡难度较大。在未进行表面处理时,几乎无法上锡。即便镀镍后情况有所改善,但仍不利于贴片操作。 马口铁 :马口铁的屏蔽效果在这几种材料中最差。不过,马口铁具有上锡效果好的特点,能够满足一些特定的工艺需求。此外,马口铁价格低廉,这使得它在一些对成本较为敏感的应用场景中具有一定的竞争力。 3.屏蔽罩的分类 3.1固定式屏蔽罩,一般也叫单件式,直接SMT贴在PCB上 设计注意事项: 1,单件式屏蔽罩因为是直接SMT贴在PCB上,建议材料选择洋白铜Cu-7521(R-1/2H or R-OH),焊接性能好。2,屏蔽罩注意开孔。 3,屏蔽罩的高度建议是0.25mm+内部器件最大高度。 屏蔽罩开孔的作用: 1, 一方面是为了工作时内部器件的散热,开孔自然会牺牲一部分的屏蔽效果。 2, 另一方面在回流焊时,以降低屏蔽罩内外的温差,保证焊接的可靠性,可以试想一下,在回流焊的高温下,如果屏蔽罩密封效果好且未开孔,很有可能出现内爆(屏蔽罩炸裂,内部器件损坏),这个是有实际案例的。 3.2双件式屏蔽罩 可拆卸式一般也叫双件式,双件式屏蔽罩可以直接打开,不用借助热风枪工具。 价格比单件式贵,底下的SMT焊接在PCB上,称为Shielding Frame , 上面的称为Shielding Cover,直接扣在Shielding Frame上,方便拆卸,一般把下面的Frame称为屏蔽框,上面的Cover称为屏蔽罩。 Frame建议采用洋白铜,上锡好;Cover可以采用马口铁,主要是便宜。 双件式可以在项目初期采用,方便调试,等待硬件调试稳定之后,再考虑采用单件式以降低成本。 3.3屏蔽罩夹子 不管是单件式屏蔽罩还是双件式屏蔽罩,都需要进行开模,有一些聪明的厂家推出了屏蔽罩夹子,英文称为Shielding Clip,用来替代屏蔽框。 优点: 1, 可以直接SMT,体积小不易变形,维修方便一些。 2, 某些场合可以直接取代屏蔽框,节省一个屏蔽框开模的费用。 3, 当夹子被焊接在电路板之后,再直接把屏蔽罩安装在这些夹子中间夹住就可以了,焊接平整度相对于屏蔽框会好一些。 一般1个屏蔽框需要用4~8个屏蔽夹子代替,需要注意的是,采用屏蔽夹子的抗干扰效果肯定没有屏蔽框好,而且比较占用PCB板的空间大,目前在手机未见有使用屏蔽罩夹子的情况, 对集成度和空间要求不高的应用可以采用屏蔽罩夹子来降低成本 。 服务标准: 1.屏蔽罩制作流程 1.1、客户提供工程图档(提供焊盘图或Gerber文件,DXF格式,) 1.2、客户提供pcb样板(根据元器件高度来评估屏蔽罩高度) 1.3、工程设计打样OK 1.4、设计屏蔽罩开模 1.5、样品制作 1.6、客户样品验证 (如有侵权,联系删除)
  • 热度 1
    2024-6-25 07:23
    378 次阅读|
    0 个评论
    抗干扰、 EMC部分 一、长线路抗干扰 在图二中 ,PCB 布局时,驱动电阻 R3 应靠近 Q1 ( MOS 管),电流取样电阻 R4 、 C2 应靠近 IC1 的第 4Pin ,如图一所说的 R 应尽量靠近运算放大器缩短高阻抗线路。因运算放大器输入端阻抗很高,易受干扰。输出端阻抗较低,不易受干扰。一条长线相当于一根接收天线,容易引入外界干扰。 在图三的A 中排版时, R1 、 R2 要靠近三极管 Q1 放置,因 Q1 的输入阻抗很高,基极线路过长,易受干扰,则 R1 、 R2 不能远离 Q1 。 在图三的B 中排版时, C2 要靠近 D2 ,因为 Q2 三极管输入阻抗很高,如 Q2 至 D2 的线路太长,易受干扰, C2 应移至 D2 附近。 =2.0mm 。 三、小信号线处理:电路板布线尽量集中,减少布板面积提高抗干扰能力。 四、一个电流回路走线尽可能减少包围面积。 如:电流取样信号线和来自光耦的信号线 五、光电耦合器件,易于干扰,应远离强电场、强磁场器件,如大电流走线、变压器、高电位脉动器件等。 六、多个IC 等供电, Vcc 、地线注意。 串联多点接地,相互干扰 七、噪声要求 1 、尽量缩小由高频脉冲电流所包围的面积,如下(图一、图二) 一般的布板方式: 2 、滤波电容尽量贴近开关管或整流二极管如上图二, C1 尽量靠近 Q1 , C3 靠近 D1 等。 3 、脉冲电流流过的区域远离输入、输出端子,使噪声源和输入、输出口分离 。 图三:MOS 管、变压器离入口太近,电磁的辐射能量直接作用于输入端,因此, EMI 测试不通过。 图四:MOS 管、变压器远离入口,电与磁的辐射能量距输入端距离加大,不能直接作用于输入端,因此 EMI 传导能通过。 4 、控制回路与功率回路分开,采用单点接地方式,如图五。 控制IC 周围的元件接地接至 IC 的地脚 ;再从地脚引出至大电容地线 。光耦第 3 脚地接到 IC 的第 1 脚,第 4 脚接至 IC 的 2 脚上 。如图六。 5 、 必要时可以将输出滤波电感安置在地回路上。 6 、 用多只 ESR 低的电容并联滤波。 7 、 用铜箔进行低感、低阻配线,相邻之间不应有过长的平行线,走线尽量避免平行、交叉用垂直方式,线宽不要突变,走线不要突然拐角(即: ≤ 直角)。(同一电流回路平行走线,可增强抗干扰能力) 八、抗干扰要求: 1 、尽可能缩短高频元器件之间连线,设法减少它们的分布参数和相互间电磁干扰,易受干扰的元器件不能和强干扰器件相互挨得太近,输入输出元件尽量远离。 2 、某些元器件或导线之间可能有较高电位差,应加大它们之间的距离,以免放电引出意外短路。
  • 热度 7
    2023-7-5 14:07
    613 次阅读|
    0 个评论
    手把手教你如何做手机PCB电磁兼容性设计
    电磁兼容性 是指电子设备在各种电磁环境中仍能够协调、有效地进行工作的能力。 电磁兼容性设计的目的 是使电子设备既能抑制各种外来的干扰,使电子设备在特定的电磁环境中能够正常工作,同时又能减少电子设备本身对其它电子设备的电磁干扰。 1、选择合理的导线宽度 由于瞬变电流在印制线条上所产生的冲击干扰主要是由印制导线的电感成分造成的,因此应尽量减小印制导线的电感量。印制导线的电感量与其长度成正比,与其宽度成反比,因而短而精的导线对抑制干扰是有利的。时钟引线、行驱动器或总线驱动器的信号线常常载有大的瞬变电流,印制导线要尽可能地短。对于分立元件电路,印制导线宽度在1.5mm左右时,即可完全满足要求;对于集成电路,印制导线宽度可在0.2~1.0mm之间选择。 2、采用正确的布线策略 采用平等走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用井字形网状布线结构,具体做法是印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连。 3、为了 抑制印制板导线之间的串扰 ,在设计布线时应尽量避免长距离的平等走线,尽可能拉开线与线之间的距离,信号线与地线及电源线尽可能不交叉。在一些对干扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰。 4、为了 避免高频信号通过印制导线时产生的电磁辐射 ,在印制电路板布线时,还应注意以下几点: (1)尽量减少印制导线的不连续性,例如导线宽度不要突变,导线的拐角应大于90度禁止环状走线等。 (2)时钟信号引线最容易产生电磁辐射干扰,走线时应与地线回路相靠近,驱动器应紧挨着连接器。 (3)总线驱动器应紧挨其欲驱动的总线。对于那些离开印制电路板的引线,驱动器应紧紧挨着连接器。 (4)数据总线的布线应每两根信号线之间夹一根信号地线。最好是紧紧挨着最不重要的地址引线放置地回路,因为后者常载有高频电流。 (5)在印制板布置高速、中速和低速逻辑电路时,应按照图1的方式排列器件。 5、 抑制反射干扰 为了抑制出现在印制线条终端的反射干扰,除了特殊需要之外,应尽可能缩短印制线的长度和采用慢速电路。必要时可加终端匹配,即在传输线的末端对地和电源端各加接一个相同阻值的匹配电阻。根据经验,对一般速度较快的TTL电路,其印制线条长于10cm以上时就应采用终端匹配措施。匹配电阻的阻值应根据集成电路的输出驱动电流及吸收电流的最大值来决定。 6、 电路板设计过程中采用差分信号线布线策略 布线非常靠近的差分信号对相互之间也会互相紧密耦合,这种互相之间的耦合会减小EMI发 射,通常(当然也有一些例外)差分信号也是高速信号,所以高速设计规则通常也都适用于差分信号的布线,特别是设计传输线的信号线时更是如此。这就意味着我们必须非常谨慎地设计信号线的布线,以确保信号线的特征阻抗沿信号线各处连续并且保持一个常数。 在差分线对的布局布线过程中,我们希望差分线对中的两个PCB线完全一致。这就意味着,在实际应用中应该尽最大的努力来确保差分线对中的PCB线具有完全一样的阻抗并且布线的长度也完全一致。差分PCB线通常总是成对布线,而且它们之间的距离沿线对的方向在任意位置都保持为一个常数不变。通常情况下,差分线对的布局布线总是尽可能地靠近。 搜索 “华秋PCB” 了解更多电路相关知识。
  • 热度 9
    2023-5-18 12:02
    610 次阅读|
    0 个评论
    一、下面的一些系统要特别注意抗电磁干扰 1、微控制器时钟频率特别高,总线周期特别快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施 1、选用频率低的微控制器 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发 射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns之间。 在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2个。 Trd的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。 3、减小信号线间的交叉干扰 A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时间是Td。在D点,由于A点信号的向前传输,到达B点后的信号反射和AB线的延迟,Td时间以后会感应出一个宽度为Tr的页脉冲信号。在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时间的两倍,即2Td的正脉冲信号。这就是信号间的交叉干扰。干扰信号的强度与C点信号的di/at有关,与线间距离有关。当两信号线不是很长时,AB上看到的实际是两个脉冲的迭加。 CMOS工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv噪声并不影响其工作。若图中AB线是一模拟信号,这种干扰就变为不能容忍。如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交叉干扰就会变小。原因是,大面积的地减小了信号线的特性阻抗,信号在D端的反射大为减小。特性阻抗与信号线到地间的介质的介电常数的平方成反比,与介质厚度的自然对数成正比。若AB线为一模拟信号,要避免数字电路信号线CD对AB的干扰,AB线下方要有大面积的地,AB线到CD线的距离要大于AB线与地距离的2~3倍。可用局部屏蔽地,在有引结的一面引线左右两侧布以地线。 4、减小来自电源的噪声 电源在向系统提供能源的同时,也将其噪声加到所供电的电源上。电路中微控制器的复位线,中断线,以及其它一些控制线最容易受外界噪声的干扰。电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高频噪声。模拟电路中的模拟信号更经受不住来自电源的干扰。 5、注意印刷线板与元器件的高频特性 在高频情况下,印刷线路板上的引线,过孔,电阻、电容、接插件的分布电感与电容等不可忽略。电容的分布电感不可忽略,电感的分布电容不可忽略。电阻产生对高频信号的反射,引线的分布电容会起作用,当长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过引线向外发 射。 印刷线路板的过孔大约引起0.6pf的电容。 一个集成电路本身的封装材料引入2~6pf电容。 一个线路板上的接插件,有520nH的分布电感。一个双列直扦的24引脚集成电路扦座,引入4~18nH的分布电感。 这些小的分布参数对于这行较低频率下的微控制器系统中是可以忽略不计的;而对于高速系统必须予以特别注意。 6、元件布置要合理分区 元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题,原则之一是各部件之间的引线要尽量短。在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为最小。 处理好接地线 印刷电路板上,电源线和地线最重要。克服电磁干扰,最主要的手段就是接地。 对于双面板,地线布置特别讲究,通过采用单点接地法,电源和地是从电源的两端接到印刷线路板上来的,电源一个接点,地一个接点。印刷线路板上,要有多个返回地线,这些都会聚到回电源的那个接点上,就是所谓单点接地。所谓模拟地、数字地、大功率器件地开分,是指布线分开,而最后都汇集到这个接地点上来。与印刷线路板以外的信号相连时,通常采用屏蔽电缆。对于高频和数字信号,屏蔽电缆两端都接地。低频模拟信号用的屏蔽电缆,一端接地为好。 对噪声和干扰非常敏感的电路或高频噪声特别严重的电路应该用金属罩屏蔽起来。 7、用好去耦电容 好的高频去耦电容可以去除高到1GHZ的高频成份。陶瓷片电容或多层陶瓷电容的高频特性较好。设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容。去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容为0.1uf的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz左右,也就是说对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用。 1uf,10uf电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些。在电源进入印刷板的地方和一个1uf或10uf的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容。 每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uf。最好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用胆电容或聚碳酸酝电容。 去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uf,对微控制器构成的系统,取0.1~0.01uf之间都可以。 三、降低噪声与电磁干扰的一些经验 1、能用低速芯片就不用高速的,高速芯片用在关键地方。 2、可用串一个电阻的办法,降低控制电路上下沿跳变速率。 3、尽量为继电器等提供某种形式的阻尼。 4、使用满足系统要求的最低频率时钟。 5、时钟产生器尽量*近到用该时钟的器件。石英晶体振荡器外壳要接地。 6、用地线将时钟区圈起来,时钟线尽量短。 7、I/O驱动电路尽量靠近印刷板边,让其尽快离开印刷板。对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射。 8、MCD无用端要接高,或接地,或定义成输出端,集成电路上该接电源地的端都要接,不要悬空。 9、闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。 10、印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发 射与耦合。 11、印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。 12、单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗,经济是能承受的话用多层板以减小电源,地的容生电感。 13、时钟、总线、片选信号要远离I/O线和接插件。 14、模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。 15、对A/D类器件,数字部分与模拟部分宁可统一下也不要交叉。 16、时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆。 17、元件引脚尽量短,去耦电容引脚尽量短。 18、关键的线要尽量粗,并在两边加上保护地。高速线要短要直。 19、对噪声敏感的线不要与大电流,高速开关线平行。 20、石英晶体下面以及对噪声敏感的器件下面不要走线。 21、弱信号电路,低频电路周围不要形成电流环路。 22、任何信号都不要形成环路,如不可避免,让环路区尽量小。 23、每个集成电路一个去耦电容。每个电解电容边上都要加一个小的高频旁路电容。 24、用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容。使用管状电容时,外壳要接地。 搜索 “华秋 PCB” 了解更多 PCB 电路相关资料资讯。
  • 热度 21
    2014-12-29 14:36
    1595 次阅读|
    0 个评论
    一、编码器的分类 根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1 增量式编码器 增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2 绝对式编码器 绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。显然,吗道必须N条吗道。目前国内已有16位的绝对编码器产品。 1.3 混合式绝对编码器 混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 二、光电编码器的应用 增量型编码器与绝对型编码器区别 1、角度测量 汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。摆锤冲击实验机,利用编码器计算冲击是摆角变化。 2、长度测量 计 米 器,利用滚轮周长来测量物体的长度和距离。 拉线位移传感器,利用收卷轮周长计量物体长度距离。 联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。 介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。 3、速度测量 线速度,通过跟仪表连接,测量生产线的线速度 角速度,通过编码器测量电机、转轴等的速度测量 4、位置测量 机床方面,记忆机床各个坐标点的坐标位置,如钻床等 自动化控制方面,控制在牧歌位置进行指定动作。如电梯、提升机等 5、同步控制 通过角速度或线速度,对传动环节进行同步控制,以达到张力控制 三、增量型编码器(旋转型) 1、工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。  编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 2、信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-,B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。    3、增量式编码器的问题: 增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。 增量型编码器的一般应用: 测速,测转动方向,测移动角度、距离(相对)。    四、绝对型编码器(旋转型)   绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16 线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多, 这样在安装时不必要费劲找零点, 将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。
相关资源