tag 标签: sic

相关帖子
相关博文
  • 热度 1
    2024-8-13 09:44
    210 次阅读|
    0 个评论
    人工智能(AI)技术的快速发展对数据处理和传输提出了前所未有的挑战。在深度学习、自然语言处理和计算机视觉等AI应用中,训练和学习需要巨大的数据量传递和交互。2023年GPT-4模型所需训练的参数量有1.8万亿,要完成这么大的数据量的运算,需要上万个GPU同时工作。如此庞大的数据传输对于传统铜缆而言是个巨大的挑战,因此光模块在数据传输中发挥着非常重要的作用。光模块在AI和数据中心中负责数据的转换,将1bit的电信号转为光信号,把1bit的光信号转为电信号。400G模块,能转换0.4T bit,800G光模块,转换0.8T bit,以GPT-4的训练参数计算,完成一次计算所需要调用的光模块数量就可能多达数万。而随着大模型的不断进化和训练参数的急速增加,对光模块的需求量只多不少。 AI场景对光模块的故障率要求 因为训练数据量大,所以AI场景架构采用GPU运算更合适,这与传统的数据中心的服务器类型有所区别。CPU是串行运算,通常有较少的核心(一般在2到32个核心之间),每个核心都非常强大,适合执行复杂的单线程任务,适用于传统数据中心的串行结构。GPU是并行运算,拥有大量的核心(数百到数千个),每个核心较简单,适合执行大量的并行任务,因此更适用数据量超大的AI场景。传统的数据中心结构,是基于串行方式的,对时延的要求虽然很看重,但不像AI场景中对时延的苛刻要求。并行任务的结果就是成千上万的并行数据要传输,整个数据的完成是以时延最大,最慢的那个bit为准的。其他再快也不行。 光模块的故障率比传统的电学芯片的要高很多很多,光模块选择热插拔,也是因为光学器件的故障率很高,用热插拔方便维修和更换。传统的数据中心,光模块对于故障率的要求比传统通信更宽松,少量的故障并不会影响到整体的运行传输,所以遇到光模块故障后及时更换就可以了。但对于基于AI的这种场景就不适用,大数据量的并行计算,而且不是实时保存的。如果有任何一个数据传错了,那么整体要重来,重新计算一遍。中国移动也曾提到当前人工智能中主流万卡集群的GPU网络每月最大会发生上千次闪断,其中34%是与网络相关。其中每年大概会有60次左右的光模块故障导致的训练中断,而且故障定位也通常会需要数天到数十天之久。所以光模块失效率高会导致大的丢包率和维护成本,从而给设备服务商带来巨大的运营压力。因此在AI场景中对光模块可靠性的要求非常苛刻。 图1 AI大模型中丢包率导致训练所需时间增长 AI场景光模块的可靠性问题 综上所述,对于传统数据中心而言,一般会把可靠性的要求放宽,是因为通常在实际部署中,数据中心的树形网络结构是配置了冗余的,从而这此前提下放宽了对模块故障率的要求。冗余越大,有更多的节点可以实现业务传输,光模块的失效率略大一些是不影响整体通信的。因此传统数据中心的光模块,有很长一段时间,是非气密封装,因为非气密封装,故障率会高一些,但成本也会下降很多。 但AI大模型与传统数据中心不同,AI场景所采用的并行计算,如上一节所讲,对故障零容忍,对光模块的稳定性要求极高。因此,非气密封装已经不能满足可靠性要求了,各家厂商又开始使用气密封装降低失效率。光模块中产生的可靠性问题主要是光器件失效引起的,包括激光器、探测器和其他元器件,其中激光器失效最高。阿里曾经做过统计,在光模块众多的元器件中,超过90%以上的失效是与激光器相关的。 图2 阿里统计的光模块各元件失效占比统计 光模块自身已经面临非常高的可靠性风险了,然而光模块从400G、800G发展到1.6T,模块功耗随着芯片功率、射频损耗,DSP补偿等迅速增加,功耗增加提高了光模块实际的工作温度,同样也使得光模块寿命急速缩短,可靠性急剧下降。光模块温度升高,激光器芯片的发光效率降低,废热更大,也会带来可靠性风险。 图3 功耗增加机柜温度升高可靠性下降 现行可供参考的可靠性标准如GR-468,一方面从标准提出到现在已有二十余年时间,另一方面该标准是作为通信用光电子器件的可靠性标准,对AI场景并不适用。近年来,大模型使用方以及光模块厂商都对光器件提出了更严格的可靠性要求。在2023年CIOE上,阿里提出了自身对于光芯片可靠性的认证要求,要求光模块FIT小于125,即有1000个光模块在工作,5年后,只允许5个出现故障。同时也对激活能Ea,和n做了限定,限定激活能 Ea=0.35,n=0。老化公式的n,是加速压力的指数,可以是电流,温度,或者湿度,关键取决于芯片设计里哪个因素的影响最大。以电流为例,如果n按照3取值,老化电流是工作电流的1.5倍,得出激光器工作寿命是10年。如果相同条件下n取为0,那么寿命就只有3年了。Ea和n都取最小值,会得到很小的加速系数,最终会计算出很大的FIT值,这样一来对可靠性的要求就更为苛刻了。 图4 可靠性中加速系数计算公式 如何提升光模块可靠性 光模块的可靠性重点关注的就是激光器。激光器从发光原理、制造工艺来看,降低优化的程度有限,并不能完全达到电芯片的尺度,近期内也不会有颠覆性的技术改良大幅提高可靠性。对于光模块的可靠性控制重点还是在实际使用时的早期失效和随机失效,早期失效可以通过选用一定参数的加速老化进行剔除,老化的条件,时间都需要通过科学的计算,避免老化时间过短剔除不到位或者时间过长降低产品寿命。对于随机失效,目前有些方案如finisar等公司采用的备份激光器,通过增加多组激光器作为备用降低失效率,一个坏了立刻切到另一个好的激光器去工作,但是增加一组备份,成本、空间、功耗,又增加了很多难度。海思设计过一种智能光模块,通过实时监控光模块多种参数状态,采用大数据训练主动对光模块做预警,提前判断光模块即将失效,这要求厂家对自身产品数据要有十分全面的掌握。 广电计量光电器件可靠性分析 光模块市场近两年随着AI浪潮的出现展现出了广阔的想象空间,但也给光模块的可靠性带来了更高的挑战。过去厂家不重视模块的可靠性,缺乏对产品的失效评估,而现在解决产品可靠性问题,将会是占领用户市场,打通产品从送样到批量供货的关键。 广电计量是国内第一家完成激光发射器、探测器全套AEC-Q102车规认证的国有第三方上市检测机构,具备VCSEL、LED、APD、SPAD等激光器和探测器批次性验证试验能力,具有丰富的光电器件可靠性验证经验。在人才队伍上,形成以博士、专家为核心的光电器件测试分析团队,可以协助客户定制可靠性评估方案,建立准确的产品失效模型,满足客户在可靠性、失效分析领域的认证检测需求。 广电计量半导体服务优势 工业和信息化部“面向集成电路、芯片产业的公共服务平台” 工业和信息化部“面向制造业的传感器等关键元器件创新成果产业化公共服务平台” 国家发展和改革委员会“导航产品板级组件质量检测公共服务平台” 广东省工业和信息化厅“汽车芯片检测公共服务平台” 江苏省发展和改革委员会“第三代半导体器件性能测试与材料分析工程研究中心” 上海市科学技术委员会“大规模集成电路分析测试平台” 在集成电路及SiC领域是技术能力最全面、知名度最高的第三方检测机构之一,已完成MCU、AI芯片、安全芯片等上百个型号的芯片验证,并支持完成多款型号芯片的工程化和量产。 在车规领域拥有AEC-Q及AQG324全套服务能力,获得了近50家车厂的认可,出具近400份AEC-Q及AQG324报告,助力100多款车规元器件量产。
  • 2024-1-19 14:50
    0 个评论
    随着新能源市场的爆发,电动汽车,光伏、储能等下游应用驱动下,碳化硅功率器件迎来了新一轮增长期。特别是电动汽车上SiCMOSFET的大规模应用后,在近几年可以看到,国内外各大厂商都密集地加入到SiC的行列中,推出相关产品。 国内规模比较大的有华润微、派恩杰、杨杰科技等都有SiCMOSFET产品,而更多的初创企业也在进入车规SiCMOSFET赛道。比如芯塔电子自主研发的1200V/80mΩTO-263-7封装SiC MOSFET器件成功获得第三方权威检测机构(广电计量)全套AEC-Q101车规级可靠性认证。包括之前通过测试认证的650V/20A TO-252-3封装SiC SBD产品在内,芯塔电子已有两款核心产品通过此项认证。目前,芯塔电子1200V/80mΩ SiC MOSFET在头部OBC企业通过测试,已进入批量导入阶段。 按照汽车行业的验证周期维度来算,预估在1-2年后,就能看到国产SiCMOSFET大规模被应用在新能源汽车上。 芯塔电子,一直以科技创新为动力,推动碳化硅(SiC)功率器件的研发与应用,是国内少数几家获得车规级认证的碳化硅功率器件厂商之一。 华秋旗下媒体社区平台——电子发烧友,作为行业领先的电子媒体,致力于为工程师创造价值,为行业提供高质量内容,为企业提供专业的品牌传播,深度报道,产业洞察等服务。 在过去一年中,华秋-电子发烧友,凭借其深度的采访、专业的报道、广泛的传播,推动芯塔电子产品和品牌的发展。 此次,华秋-电子发烧友荣获芯塔电子“ 2023年度优秀媒体合作伙伴” 奖项,充分说明了芯塔电子对华秋的认可和信任,也标志着双方将有更广阔的合作空间和更深度的合作。未来,芯塔电子将继续致力于碳化硅技术的研发和应用,为客户提供更优质、更可靠的产品和服务。同时,华秋也将一如既往地支持芯塔电子,为其品牌传播和市场拓展提供更加专业深度的服务,赋能芯塔电子品牌长效增长。 芯塔电子与华秋的携手合作,无疑将为碳化硅行业的发展注入新的活力。我们期待在未来,双方能够共同推动碳化硅技术的进步和应用,为全球的能源和交通领域带来更大的价值。 关于芯塔电子 芯塔电子是一家第三代半导体功率器件及模块整体解决方案提供商,专注于提供第三代半导体功率器件和模块整体解决方案的芯片公司。主要产品包括SiC SBD,SiC MOSFET,GaN HEMT等第三代半导体功率器件和模块、驱动等。 关于华秋-电子发烧友 电子发烧友网(华秋旗下媒体品牌)成立于2009年3月,是国内专业的电子行业门户网站,提供最新电子行业动态和产品信息,分享电子工程师设计经验及技术应用,构建电子行业最专业的互动内人气最旺、最活跃的电子工程网络媒体。 关于华秋 华秋,成立于2011年,是全球领先的产业数字化智造平台,国家级高新技术企业。以“客户为中心,追求极致体验”为经营理念,布局了电子发烧友网、方案设计、元器件电商、PCB 制造、SMT 制造和 PCBA 制造等电子产业服务,已为全球 30万+客户提供了高品质、短交期、高性价比的一站式服务。
  • 热度 7
    2023-6-13 15:27
    824 次阅读|
    0 个评论
    尽可能地降低 SiC FET 的电磁干扰和开关损耗 您如何在提高开关速度和增加设计复杂度之间寻求平衡?本博客文章将讨论此类权衡考量,并提供了一种更高效的方法,有助于您克服设计挑战并充分发挥 SiC 器件潜力。 这篇博客文章最初由 United Silicon Carbide (UnitedSiC) 发布,该公司于 2021 年 11 月加入 Qorvo 大家庭。UnitedSiC 是一家 领先 的碳化硅 (SiC) 功率半导体制造商,它的加入促使 Qorvo 将业务扩展到电动汽车 (EV)、 工业电源 、 电路保护 、可再生能源和数据中心电源等快速增长的市场。 随着人们对高效率、高功率密度和系统简单性的需求不断增长,碳化硅 (SiC) FET 因其较快的开关速度、较低的 RDS(on) 和较高的额定电压,逐渐成为对电力工程师极具吸引力的选择。 但是,SiC 器件较快的开关速度会导致更高的 VDS 尖峰和更长的振铃持续时间,从而在高电流电平下引入了更多的 EMI。对于从事电动汽车和可再生能源等高功率应用的工程师来说,如何在提高效率并充分发挥先进技术潜力的同时,避免过于复杂的设计将会是一大难题。 什么是 VDS 尖峰和振铃? 寄生电感是导致 VDS 尖峰和振铃的根本原因。从 SiC MOSFET 的典型关断波形(图 1)可以看出,栅极-源极电压 (VGS) 在 18V 至 0V 之间,关断的漏极电流 (ID) 为 50A,且总线电压 (VDS) 为 800V。由于 SiC MOSFET 具有更快的开关速度,所以会出现较高的 VDS 尖峰和较长的振铃持续时间。较高的 VDS 尖峰会减少器件应对闪电和负载突变等条件导致的电压问题的裕量。较长的振铃持续时间也会引入更多的 EMI。这种现象在高电流电平下更加明显。 图 1:SiC 器件的较快开关速度所导致的关断 VDS 尖峰和振铃 传统方法 抑制EMI 的常规解决方案就是使用高栅极 电阻 (RG) 来降低电流变化率 (dI/dt)。但实际上,使用高 RG 会显著增加开关损耗,进而损失效率,所以在使用这种方法时,我们不得不在效率和 EMI 之间做出取舍。 另一种解决方案是减少电源回路中的杂散电感。但是,这需要重新设计PCB 布局,并需要使用尺寸更小、电感更低的封装。此外,PCB 上能够减小的电源回路面积是有限的,而且也需要遵守相关安全法规规定的最小间距和最小间隙。此外,更小巧的封装还会导致热性能降低。 我们还需要考虑 滤波器 ,以帮助我们满足EMI 要求并简化系统权衡。除此之外,我们还可以使用控制方法来减少 EMI。例如,频率抖动技术可通过扩展电源的噪声频谱范围来减少 EMI。 新方法 一个简单的 RC 缓冲电路可以帮助克服设计挑战并充分发挥 SiC 器件的潜力,是一种更为高效的解决方案。事实证明,这个简单的解决方案可以在广泛的负载范围内更高效地控制 VDS 尖峰并缩短振铃持续时间,并实现可以忽略的关断延迟。 得益于更快速的 dv/dt 和额外的 Cs,缓冲电路还具有更高的位移电流,从而可以减少关断过渡期间的 ID 和 VDS 重叠。 可以通过双脉冲测试 ( DP T) 来证明缓冲电路的有效性。该测试采用了带感性负载的半桥配置。高端和低端都使用相同的器件,VGS、VDS 和 ID 均从低端器件测量(图 2)。 图 2:半桥配置(顶部和底部使用相同的器件) 使用电流互感器 (CT) 测量器件和缓冲电路的电流。因此,测得的开关损耗包括器件开关损耗和缓冲电路损耗。 其中的缓冲电路由 SiC MOSFET 漏极和源极之间的一个 10Ω 电阻和一个 200pF 电容 串联组成。 图 3:RC 缓冲电路可更有效地控制关断 EMI 首先,我们比较关断时的情况(图3)。测试的设备对象与图 1 相同。左侧波形使用 RC 缓冲电路和低 RG(off),而右侧波形则使用高 RG(off),未使用缓冲电路。这两种方法都可以限制关断 VDS 峰值电压。但是,使用缓冲电路之后,只需 33ns 即可抑制振铃,而高 RG(off) 的振铃持续时间仍超过 100ns。与使用高 RG(off) 相比,使用缓冲电路时的延迟时间更短。由此可判断,缓冲电路有助于在关断时更有效地控制 VDS 关断尖峰和振铃持续时间。 图 4:RC 缓冲电路在导通期间的有效性 在导通时(图4),将使用 RC 缓冲电路和 5Ω RG(on) 的波形与未使用缓冲电路的波形进行比较可以发现,使用缓冲电路时,反向恢复电流峰值 (Irr) 略有提高,从 94A 提高到了 97A,除此之外,其对导通波形的影响可以忽略不计。 这表明,与高 RG(off) 相比,缓冲电路有助于更有效地控制 VDS 尖峰和振铃持续时间。但缓冲电路能否更高效呢?(图 5) 图 5:比较缓冲电路与高 RG(off) 之间的开关损耗(Eoff、Eon) 在 48A 时,高 RG(off) 的关断开关损耗是使用缓冲电路和低 RG(off) 时的两倍以上。由此证明,缓冲电路在关断时更高效。因为缓冲电路可实现更快速的开关,同时还可以更好地控制 VDS 尖峰和振铃。 从导通开关损耗的角度看,使用缓冲电路时,Eon 平均增加了 70µJ。为了充分估计整体效率,我们需要将 Eoff 和 Eon 相加,然后比较 Etotal(图 6)。在全速开关器件时,可以很明显地看出缓冲电路在漏级电流为 18A 以上时效率更高。买电子元器件现货上唯样商城。对于在 40A/40kHz 下开关的 40mΩ 器件,在使用高 RG(off) 与使用低 RG(off) 和缓冲电路之间,每个器件的开关损耗差为 11W。 图 6:比较缓冲电路与高 RG(off) 之间的开关损耗 (Etotal) 因此我们可以推断,与使用高 RG(off) 相比,使用缓冲电路是一种更高效的解决方案。 随着第 4 代 SiC 器件进入市场,这种简单的设计解决方案将继续提供更低的总开关损耗,继续帮助优化系统功率效率。 关于简单的缓冲电路如何在 UnitedSiC SiC 器件中实现出色效率的更多信息,请观看我们近期的研讨会:尽可能地降低 SiC FET 的电磁干扰和开关损耗。
  • 热度 6
    2023-5-22 09:19
    630 次阅读|
    0 个评论
    SiC MOSFET的短沟道效应 Si IGBT和SiC沟槽MOSFET之间有许多电气及物理方面的差异,Practical Aspects and Body Diode Robustness of a 1200V SiC Trench MOSFET 这篇文章主要分析了在SiC MOSFET中比较明显的短沟道效应、Vth滞回效应、短路特性以及体二极管的鲁棒性。直接翻译不免晦涩难懂,不如加入自己的理解,重新梳理一遍,希望能给大家带来更多有价值的信息。今天我们着重看下第一部分——短沟道效应。 Si IGBT / MOSFET 与SiC MOSFET,尽管衬底材料不一样,但是形成栅极氧化层的材料却是一样的——都是SiO2。SiC-SiO2界面缺陷大于Si-SiO2界面,界面缺陷会降低反型层沟道迁移率,进而提高沟道 电阻 。对于SiC MOSFET,尽管人们花了很多精力来提高沟道迁移率,但其迁移率仍然远远低于硅的IGBT/MOSFET。 (更详细的解释请参考:SiC MOSFET真的有必要使用沟槽栅吗?) 因此,商用SiC MOSFET会设计成具有相对较短的反型层沟道,以尽量减少其沟道电阻。对于1200V的SiC MOSFET来说,沟道电阻对整个R DS,on 的贡献最大,这与高压Si MOSFET完全不同。此外,对于沟槽MOSFET,由于SiC漂移区厚度较低,基极掺杂较高,因此沟道区附近的电场强度(特别是在开关期间)比Si MOSFET高。为了保护栅极氧化物,必须有一个屏蔽结构,这在所有现代SiC MOSFET概念中都可以找到。与硅器件相比,上述效应导致了更明显的漏极势垒降低效应(DIBL-或短沟道效应)。DIBL效应的原理大家可以在百度搜到,这里就不再赘述了。DIBL效应造成的明显的现象是——随着漏极-源极电压V DS 的增加,栅-源极阈值电压V GS(th) 会随之降低,见图1。 Fig.1:不同制造商1200V SiC MOSFET的V GS(th) 曲线, Infineon -沟槽,M1-沟槽,M2-平面 DIBL效应和栅极电荷 由于上述的DIBL效应,与IGBT相比,SiC MOSFET的输出特性看起来有所不同。在相同V GS 条件下,器件的饱和电流随V DS 上升而上升。见图2。 图2:45mΩ、1200V SiC沟槽MOSFET在25°C时不同V GS 下的输出特性曲线。该特性是在短路状态下,通过非常短的脉冲测量的,并在考虑到测量期间温度上升的情况。 硅IGBT通常使用更长的反型沟道,沟道电阻对静态损耗来说是次要的。阻断状态下的电场较小,因此,DIBL效应较低,饱和电流不会随DS电压上升而变化太大。下图(左)是IGBT的输出特性曲线,可以看到,线性区和饱和区之间的分界点很清楚,曲线进入饱和状态之后的部分非常平坦,而SiC MOSFET的分界点则没那么明显,即使进入饱和状态,电流曲线仍有一定斜率的上升。 典型的IGBT输出特性曲线(左)与SiC MOSFET输出 特性曲线(右) 由于SiC-MOS器件的V GS(th) 随着漏极电压的增加而减少,饱和电流I D,sat 上升得更明显,原因可参见以下公式,可以看到,饱和电流与过驱动电压(V GS -V GSth )的平方成正比。 其中k为一个常数 W-沟道宽度,µn-电子迁移率,Cox–栅氧化层 电容 ,L–沟道长度 对系统进行短路保护设计必须考虑DIBL的影响。例如,我们需要知道直流母线电压下的退饱和电流水平。在器件设计中,可以通过更有效的p-屏蔽结构和更长的沟道来减少DIBL效应。然而,这两个参数也可能导致更高的R DS,on 。 DIBL的第二个效应可以通过图3中的栅极电荷曲线来观察。V DS 变化期间的V GS 是一个斜坡,而IGBT的典型栅极电荷曲线,这时是一个恒定的V GS 值。 栅极电荷曲线对比:IGBT与SiC MOSFET 因此,在计算重要参数Q GD 时,使用斜坡时间段是不正确的。更合适的方法是将V DS 波形与Q G 特性叠加在同一张图上,并如图3所示设置取值范围(取10%V DS ~97%V DS )。 图3: 英飞凌 45mΩ/1200V芯片的栅极电荷特性(蓝色),在800V、20A、25°C、V GS -5V→15V的情况下,开通时测量,利用V DS (红色)波形提取Q GD 这其实是在对测得的小信号电容C GD 进行积分。 上述方法可得45mΩ器件Q GD 为13nC。从图3中还可以提取使V GS 达到阈值水平所需的电荷(Q GS,th ,约18nC),可以发现Q GD /Q GS,th 之比小于1。这有助于抑制寄生导通,即在V DS 快速变化的情况下,通过C GD 给栅极充电的电荷量,小于使栅极电压V GS 抬升至阈值V GSth 的电荷量。 总结一下,商业化的SiC MOSFET普遍采用短沟道设计,用来降低导通电阻,这使得DIBL(漏致势垒降低效应)比较明显。买电子元器件现货上唯样商城。SiC MOSFET中的DIBL效应首先表现在饱和电流随V DS 上升而上升,其次表现在栅极电荷曲线中的米勒平台段呈斜线。从图中计算得出SiC的Q GD 需要将V DS 与栅极电荷曲线叠加在一起,通过限定边界条件的方式得出。 来源:英飞凌,赵佳
  • 热度 4
    2021-3-29 11:47
    14815 次阅读|
    0 个评论
    SiC-MOSFET-特征 本篇进入SiC-MOSFET相关的内容介绍。功率转换电路中的晶体管的作用非常重要,为进一步实现低损耗与应用尺寸小型化,一直在进行各种改良。SiC功率元器件半导体的优势前面已经介绍过,如低损耗、高速开关、高温工作等,显而易见这些优势是非常有用的。本章将通过其他功率晶体管的比较,进一步加深对SiC-MOSFET的理解。 SiC-MOSFET的特征 SiC-SBD的章节中也使用了类似的图介绍了耐压覆盖范围。本图也同样,通过与Si功率元器件的比较,来表示SiC-MOSFET的耐压范围。 目前SiC-MOSFET有用的范围是耐压600V以上、特别是1kV以上。关于优势,现将1kV以上的产品与当前主流的Si-IGBT来比较一下看看。相对于IGBT,SiC-MOSFET降低了开关关断时的损耗,实现了高频率工作,有助于应用的小型化。相对于同等耐压的SJ-MOSFET(超级结MOSFET),导通电阻较小,可减少相同导通电阻的芯片面积,并显著降低恢复损耗。 下表是600V~2000V耐压的功率元器件的特征汇总。 雷达图的RonA为单位面积的导通电阻(表示传导时损耗的参数),BV为元器件耐压,Err为恢复损耗,Eoff为关断开关的损耗。SiC已经很完美,在目前情况的比较中绝非高估。 下一篇将结合与SJ-MOSFET和IGBT的比较,更详细地介绍SiC-MOSFET的特征。 功率晶体管的结构与特征比较 继前篇内容,继续进行各功率晶体管的比较。本篇比较结构和特征。 功率晶体管的结构与特征比较 下图是各功率晶体管的结构、耐压、导通电阻、开关速度的比较。 使用的工艺技术不同结构也不同,因而电气特征也不同。补充说明一下,DMOS是平面型的MOSFET,是常见的结构。Si的功率MOSFET,因其高耐压且可降低导通电阻,近年来超级结(Super Junction)结构的MOSFET(以下简称“SJ-MOSFET”)应用越来越广泛。关于SiC-MOSFET,这里给出了DMOS结构,不过目前ROHM已经开始量产特性更优异的沟槽式结构的SiC-MOSFET。具体情况计划后续进行介绍。 在特征方面,Si-DMOS存在导通电阻方面的课题,如前所述通过采用SJ-MOSFET结构来改善导通电阻。IGBT在导通电阻和耐压方面表现优异,但存在开关速度方面的课题。SiC-DMOS在耐压、导通电阻、开关速度方面表现都很优异,而且在高温条件下的工作也表现良好,可以说是具有极大优势的开关元件。 这张图是各晶体管标准化的导通电阻和耐压图表。从图中可以看出,理论上SiC-DMOS的耐压能力更高,可制作低导通电阻的晶体管。目前SiC-DMOS的特性现状是用椭圆围起来的范围。通过未来的发展,性能有望进一步提升。 从下一篇开始,将单独介绍与SiC-MOSFET的比较。 SiC-MOSFET-与Si-MOSFET的区别 从本文开始,将逐一进行SiC-MOSFET与其他功率晶体管的比较。 本文将介绍与Si-MOSFET的区别。尚未使用过SiC-MOSFET的人,与其详细研究每个参数,不如先弄清楚驱动方法等与Si-MOSFET有怎样的区别。在这里介绍SiC-MOSFET的驱动与Si-MOSFET的比较中应该注意的两个关键要点。 与Si-MOSFET的区别:驱动电压 SiC-MOSFET与Si-MOSFET相比,由于漂移层电阻低,通道电阻高,因此具有驱动电压即栅极-源极间电压Vgs越高导通电阻越低的特性。下图表示SiC-MOSFET的导通电阻与Vgs的关系。 导通电阻从Vgs为20V左右开始变化(下降)逐渐减少,接近最小值。一般的IGBT和Si-MOSFET的驱动电压为Vgs=10~15V,而SiC-MOSFET建议在Vgs=18V前后驱动,以充分获得低导通电阻。也就是说,两者的区别之一是驱动电压要比Si-MOSFET高。与Si-MOSFET进行替换时,还需要探讨栅极驱动器电路。 与Si-MOSFET的区别:内部栅极电阻 SiC-MOSFET元件本身(芯片)的内部栅极电阻Rg依赖于栅电极材料的薄层电阻和芯片尺寸。如果是相同设计,则与芯片尺寸成反比,芯片越小栅极电阻越高。同等能力下,SiC-MOSFET的芯片尺寸比Si元器件的小,因此栅极电容小,但内部栅极电阻增大。例如,1200V 80mΩ产品(S2301为裸芯片产品)的内部栅极电阻约为6.3Ω。 这不仅局限于SiC-MOSFET,MOSFET的开关时间依赖于外置栅极电阻和上面介绍的内部栅极电阻合在一起的综合栅极电阻值。SiC-MOSFET的内部栅极电阻比Si-MOSFET大,因此要想实现高速开关,需要使外置栅极电阻尽量小,小到几Ω左右。 但是,外置栅极电阻还承担着对抗施加于栅极的浪涌的任务,因此必须注意与浪涌保护之间的良好平衡。 与IGBT的区别 上一章针对与Si-MOSFET的区别,介绍了关于SiC-MOSFET驱动方法的两个关键要点。本章将针对与IGBT的区别进行介绍。 与IGBT的区别:Vd-Id特性 Vd-Id特性是晶体管最基本的特性之一。下面是25℃和150℃时的Vd-Id特性。 请看25℃时的特性图表。SiC及Si MOSFET的Id相对Vd(Vds)呈线性增加,但由于IGBT有上升电压,因此在低电流范围MOSFET元器件的Vds更低(对于IGBT来说是集电极电流、集电极-发射极间电压)。不言而喻,Vd-Id特性也是导通电阻特性。根据欧姆定律,相对Id,Vd越低导通电阻越小,特性曲线的斜率越陡,导通电阻越低。 IGBT的低Vd(或低Id)范围(在本例中是Vd到1V左右的范围),在IGBT中是可忽略不计的范围。这在高电压大电流应用中不会构成问题,但当用电设备的电力需求从低功率到高功率范围较宽时,低功率范围的效率并不高。 相比之下,SiC MOSFET可在更宽的范围内保持低导通电阻。 此外,可以看到,与150℃时的Si MOSFET特性相比,SiC、Si-MOSFET的特性曲线斜率均放缓,因而导通电阻增加。但是,SiC-MOSFET在25℃时的变动很小,在25℃环境下特性相近的产品,差距变大,温度增高时SiC MOSFET的导通电阻变化较小。 与IGBT的区别:关断损耗特性 前面多次提到过,SiC功率元器件的开关特性优异,可处理大功率并高速开关。在此具体就与IGBT开关损耗特性的区别进行说明。 众所周知,当IGBT的开关OFF时,会流过元器件结构引起的尾(tail)电流,因此开关损耗增加是IGBT的基本特性。 比较开关OFF时的波形可以看到,SiC-MOSFET原理上不流过尾电流,因此相应的开关损耗非常小。在本例中,SiC-MOSFET+SBD(肖特基势垒二极管)的组合与IGBT+FRD(快速恢复二极管)的关断损耗Eoff相比,降低了88%。 还有重要的一点是IGBT的尾电流随温度升高而增加。顺便提一下,SiC-MOSFET的高速驱动需要适当调整外置的栅极电阻Rg。这在前文“与Si-MOSFET的区别”中也提到过。 与IGBT的区别:导通损耗特性 接下来看开关导通时的损耗。 IGBT在开关导通时,流过Ic(蓝色曲线)用红色虚线圈起来部分的电流。这多半是二极管的恢复电流带来的,是开关导通时的一大损耗。请记住:在并联使用SiC-SBC时,加上恢复特性的快速性,MOSFET开关导通时的损耗减少;FRD成对时的开关导通损耗与IGBT的尾电流一样随温度升高而增加。 总之,关于开关损耗特性可以明确的是:SiC-MOSFET优于IGBT。 另外,这里提供的数据是在ROHM试验环境下的结果。驱动电路等条件不同,结果也可能不同。 体二极管的特性 上一章介绍了与IGBT的区别。本章将对SiC-MOSFET的体二极管的正向特性与反向恢复特性进行说明。 如图所示,MOSFET(不局限于SiC-MOSFET)在漏极-源极间存在体二极管。从MOSFET的结构上讲,体二极管是由源极-漏极间的pn结形成的,也被称为“寄生二极管”或“内部二极管”。对于MOSFET来说,体二极管的性能是重要的参数之一,在应用中使用时,其性能发挥着至关重要的作用。 SiC-MOSFET体二极管的正向特性 下图表示SiC-MOSFET的Vds-Id特性。在SiC-MOSFET中,以源极为基准向漏极施加负电压,体二极管为正向偏置状态。该图中Vgs=0V的绿色曲线基本上表示出体二极管的Vf特性,。Vgs为0V即MOSFET在关断状态下,没有通道电流,因此该条件下的Vd-Id特性可以说是体二极管的Vf-If特性。如“何谓碳化硅”中提到的,SiC的带隙更宽,Vf比Si-MOSFET大得多。 而在给栅极-源极间施加18V电压、SiC-MOSFET导通的条件下,电阻更小的通道部分(而非体二极管部分)流过的电流占支配低位。为方便从结构角度理解各种状态,下面还给出了MOSFET的截面图。 SiC-MOSFET体二极管的反向恢复特性 MOSFET体二极管的另一个重要特性是反向恢复时间(trr)。trr是二极管开关特性相关的重要参数这一点在SiC肖特基势垒二极管一文中也已说明过。不言而喻,MOSFET的体二极管是具有pn结的二极管,因而存在反向恢复现象,其特性表现为反向恢复时间(trr)。下面是1000V耐压的Si-MOSFET和SiC-MOSFET SCT2080KE的trr特性比较。 如图所示,示例的Si-MOSFET的trr较慢,流过较大的Irr。而SiC-MOSFET SCT2080KE的体二极管速度则非常快。trr、Irr均为几乎可忽略的水平,恢复损耗Err已经大幅降低。 SiC-MOSFET的应用实例 本章将介绍部分SiC-MOSFET的应用实例。其中也包括一些以前的信息和原型级别的内容,总之希望通过这些介绍能帮助大家认识采用SiC-MOSFET的好处以及可实现的新功能。另外,除了SiC-MOSFET,还可以从这里了解SiC-SBD、全SiC模块的应用实例。 SiC-MOSFET应用实例1:移相DC/DC转换器 下面是演示机,是与功率Power Assist Technology Ltd.联合制作的。 全桥式逆变器部分使用了3种晶体管(Si IGBT、第二代SiC-MOSFET、上一章介绍的第三代沟槽结构SiC-MOSFET),组成相同尺寸的移相DCDC转换器,就是用来比较各产品效率的演示机。 首先,在SiC-MOSFET的组成中,发挥了开关性能的优势实现了Si IGBT很难实现的100kHz高频工作和功率提升。另外,第二代(2G)SiC-MOSFET中,由2个晶体管并联组成了1个开关,但由于第三代(3G)SiC-MOSFET导通电阻更低,晶体管数得以从8个减少到4个。关于效率,采用第三代(3G)SiC-MOSFET时的结果最理想,无论哪种SiC-MOSFET的效率均超过Si IGBT。 SiC-MOSFET应用实例2:脉冲电源 脉冲电源是在短时间内瞬时供电的系统,应用例有气体激光器、加速器、X射线、等离子电源等。作为现有的解决方案有晶闸管等真空管和Si开关,但市场需要更高耐压更高速的开关。针对这种市场需求,利用SiC的高耐压和高速性能,实现了超高电压高速开关。从高速性的角度看这是Si IGBT很难实现的。下例是与福岛SiC应用技研株式会社、株式会社京都New-Tronics、国立研究开发法人科学技术振兴机构合作开发,在CEATEC 2014、TECHNO-FRONTIER2015展出的产品。 ・超高压脉冲电源 特征 ・超高耐压伪N通道 SiC MOSFET ・低导通电阻 (以往产品的1/100以下) ・高重复频率 应用例 ・荷电粒子加速器 ・医疗用设备电源 ・等离子发生器等 ・1~10kV随机脉冲发生器:13.2kV SiC开关 来源:techclass.rohm
相关资源