原创 浅谈CMOS成像器连载之四:像素阵列的曝光

2013-1-15 14:30 7099 27 33 分类: 消费电子

       如在前面“APS像素的原理和结构”中所述,每一个APS像素的重置Reset信号是用来控制曝光开始的,其选择Select信号是用来控制读出的。如图4(C)所示意:在CMOS成像器像素阵列中,水平方向的每一行Row(x)上的所有像素共享同一组重置Reset(x)和选择Select(x)控制信号。因此,每一行上的所有像素将同时被控制曝光或读出,换言之曝光和读出是按行进行的。

 

f1.jpg

 

CMOS成像器的基本曝光方式是滚动快门Rolling Shutter曝光,图3(A)示意一个3T-APS像素阵列滚动快门方式的曝光和读出时序。在阵列起始的Row(0)行,重置信号Reset(0)控制本行所有像素的光电二极管充电重置,开始了对整幅图像的曝光。然后按相等的时间间隔Trow,依次逐行(即滚动)执行Reset(1)、Reset(2)、Reset(3)…的重置操作,直到

 

f3.jpg

 

Reset(N-1)完成整幅图像的曝光开始操作。每行Row(x)像素曝光之后,经过曝光时间Exposure Time,用同样在一行像素**享的选择信号Select(x)控制这一行像素的读出,以完成这一行像素的全部曝光过程。曝光时间就是这一行的重置信号Reset(x)到选择信号Select(x)的时间间隔。与重置Reset控制一样,从Row(0)行的Select(0)开始依次逐行(滚动)读出操作直到Row(N-1)行的Select(N-1)控制完成一整幅图像的全阵列读出。

 

滚动快门可以是单幅图像的也可以是连续图像的曝光,单幅图像曝光应用于静止图像照相机still camera的摄像,连续图像曝光被广泛应用于视频和电视摄像场合。连续曝光是当某一行像素的曝光过程 - 从重置到选择输出 - 完成之后,下一次曝光就开始工作了,而不必等待整幅图像完成曝光。如图4(A)所示。连续曝光通常有固定的帧刷新频率Fframe,使得每一行重置有固定的周期Trst = 1 / Fframe。为了完整地实现每一次曝光过程,曝光时间Texp必须小于重置周期:Texp <Trst,即Texp < 1 / Fframe。譬如对于每秒60帧的连续图像曝光,最长的曝光时间不能大于1/60秒。

 

       滚动快门曝光方式接近于传统的电视逐行扫描摄像过程,在整幅图像上,每一个像素不是在同一时刻同时开始和结束曝光的。在拍摄运动物体或光线快速变化的图像时会引起几何的或光的失真。全局快门Global Shutter 曝光方式与滚动快门方式不同,图像上的每一个像素,同时开始曝光并然后同时结束。这种理想的曝光方式,甚至在传统的化学胶片film曝光照相术中,也是难以完全实现的。因为用电子信号控制快门速度,远比机械快门的动作快得多。在数字摄影或摄像的全局快门曝光下,一幅图像上每个像素的曝光时间差异可以完全忽略不计。

 

       CMOS成像器的全局快门曝光可以用4晶体管像素4T-APS阵列结构实现,这种像素的电原理图示意于图4(D)。4T-APS像素的电路在3T-APS的基础上增加了一个作为传输门的晶体管TX,它的源极S和漏极D跨接在光电二极管和源极跟随器的栅极G之间,并在Tsf的栅极到地之间形成一个分布的悬浮PN结电容CFD。4T-APS像素阵列在执行全局曝光过程中,可以在阵列上所有像素行同时重置开始曝光;通过在所有的TX栅极同时加信号TX控制晶体管通导,使所有像素同时象3T-APS一样曝光;这时候每个光电二极管PD上的电压也同时存储在悬浮电容CFD上。停止曝光的控制方法是使TX管截止,从而导致CFD悬浮并存储了曝光的最终电压,然后从源极跟随器输出。这样就可以实现阵列上所有像素同时开始曝光,并且在达到曝光时间后同时停止曝光。全局曝光完成后通过选择信号的控制用与滚动曝光方式相同的滚动时序,读出存储在整个阵列CFD上的图像信息。也就是说通过TX的控制实现全局曝光;经过CFD存储的环节,然后用滚动的方式,从CFD上读出全幅图像信息。

 

       因为全局快门曝光在滚动读出的过程中存储信息的CFD与光电二极PD可以完全隔离,所以在上一帧滚动读出的同时完全可以进行下一帧的曝光。使用适当的控制时序,可以实现连续的全局曝光,被称为流水线快门Pipeline Shutter方式。这种方式可以用于高速摄像,如每秒500帧的高速摄像机,以克服高速摄像的图像失真。

 

下一期话题:阵列信息的模拟读出

浅谈CMOS成像器连载之一:CMOS成像器是可以用户定制的

浅谈CMOS成像器连载之二:APS像素的原理和结构

浅谈CMOS成像器连载之三:APS像素阵列结构

浅谈CMOS成像器连载之四:像素阵列的曝光

浅谈CMOS成像器连载之五:阵列信息的模拟读出

浅谈CMOS成像器连载之六:高清晰度和高速CMOS成像器

浅谈CMOS成像器连载之七:CMOS成像器的图像信号ADC

PARTNER CONTENT

文章评论6条评论)

登录后参与讨论

用户1668954 2013-11-27 03:43

配合圖像解說,讓閱讀者一看就懂。

liangxd_360122826 2013-3-23 21:42

很精辟的讲解,很基础

用户1645943 2013-1-23 08:58

好文一枚

用户1102217 2013-1-16 11:20

请教罗老师:长久困惑我的一个问题:按(三)文中,36*24mm感光元件对于24M(3:2)像素的分辨率,每个像素的步距是6um,即36/6000点=0.006mm,那么一个标称的像素应该由相邻4个单色像素(2G1R1B)构成,所以实际上每个单色像素的步距应是3um,因而所有数码相机技术参数里的像素,实际上是由该值4倍的单色像素组成,亦即在这感光元件上,实际的像素阵列包括控制元件都是标称像素的四倍,行列数是2倍。这样理解对吗?还有,“之七”后还有没有后续的文章?如蒙赐教,可否加发邮件到“hmzjsh@vip.sina.com”,不胜感谢!

用户1514187 2013-1-8 23:55

值得学习

用户1557450 2013-1-7 13:46

谢谢
相关推荐阅读
用户1093709 2013-01-15 14:31
浅谈CMOS成像器连载之七:CMOS成像器的图像信号ADC
CMOS成像器图像信号所使用的ADC,通常是与光电传感器阵列设计在同一芯片上的。与任何用途的同类电路一样,其主要的参数要求就是转换精度和采样速率。因为转换误差大于±1的位(bit)及其以下的位都被...
用户1093709 2013-01-15 14:31
浅谈CMOS成像器连载之六:高清晰度和高速CMOS成像器
数字图像已经发展到高清晰度和高速刷新的阶段,当今CMOS成像器的优越性能正推动了这个进程,成为这一领域图像传感器的唯一选择。高清晰度的图像包含了巨大的信息量,而高刷新速率的高清晰度图像,又要求以极...
用户1093709 2013-01-15 14:31
浅谈CMOS成像器连载之五:阵列信息的模拟读出
    如前面所述,APS像素阵列中同一列的每一个像素上,都有一个共享的列像素信号输出端Column Output,如图5所示。每一列像素的这个共享输出端,都经过一个列模拟信号通道,处理和放大这一...
用户1093709 2013-01-15 14:30
浅谈CMOS成像器连载之三:APS像素阵列结构
    上次谈到的APS像素只是一个单点的光电传感器,只获取整幅图像中一个点的光照强度值。而在CMOS成像器芯片上,整幅光学图像是成像在一个APS像素阵列Pixel Array的平面上,整幅图像信...
用户1093709 2013-01-15 08:37
浅谈CMOS成像器连载之二:APS像素的原理和结构
上次谈到APS像素是CMOS成像器的关键技术,所以我们首先了解APS像素是如何工作和构成的。最简单也是最基本的APS像素是由三个晶体管和一个光电二极管构成的,因此被称为3T-APS。如图2所示意,...
EE直播间
更多
我要评论
6
27
关闭 站长推荐上一条 /3 下一条