原创 智能温度传感器DS18B20的原理与应用

2008-5-24 12:48 3964 14 14 分类: 测试测量
智能温度传感器DS18B20的原理与应用

作者:赵海兰 赵…    文章来源:现代电子技术   








    摘  要DS18B20是DALLAS公司生产的单线数字温度传感器,他具有独特的单线总线接口方式。文章详细的介绍了单线数字温度传感器DS18B20的测量原理、特性以及在温度测量中的硬件和软件设计,具有接口简单、精度高、抗干扰能力强、工作稳定可靠等特点。
   
关键词DS18B20;单线制;温度传感器;单片机


    DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现912位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。


1.DS18B20简介
   
1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与
DS18B20的双向通讯。
   
2)在使用中不需要任何外围元件。
   
3)可用数据线供电,电压范围:+3.0~+5.5 V。
   
4)测温范围:-55 ~+125 ℃。固有测温分辨率为0.5 ℃。
   
5)通过编程可实现9~12位的数字读数方式。
   
6)用户可自设定非易失性的报警上下限值。
   
7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。
   
8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。
2.DS18B20的内部结构
    DS18B20采用3脚PR35封装或8脚SOIC封装,其内部结构框图如图1所示。


2006320101936734.jpg


    (1) 64 b闪速ROM的结构如下:


2006320101936580.jpg


    开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因。
    (2) 非易市失性温度报警触发器TH和TL,可通过软件写入用户报警上下限。
    (3) 高速暂存存储器
    DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM。后者用于存储TH,TL值。数据先写入RAM,经校验后再传给E2RAM。
而配置寄存器为高速暂存器中的第5个字节,他的内容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转换为相应精度的数值。该字节各位的定义如下:


2006320101936621.jpg



    5位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动,R1和R0决定温度转换的精度位数,即是来设置分辨率,如表1所示(DS18B20出厂时被设置为12位)。


2006320101936360.jpg


    由表1可见,设定的分辨率越高,所需要的温度数据转换时间就越长。因此,在实际应用中要在分辨率和转换时间权衡考虑。
   
高速暂存存储器除了配置寄存器外,还有其他8个字节组成,其分配如下所示。其中温度信息(第1,2字节)、TH和TL值第3,4字节、第6~8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。


2006320101936371.jpg


    DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0062 5 ℃/LSB形式表示。温度值格式如下:


2006320101936797.jpg


    对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变换为原码,再计算十进制值。表2是对应的一部分温度值。


2006320101936112.jpg


    DS18B20完成温度转换后,就把测得的温度值与TH,TL作比较,若T>THT<TL,则将该器件内的告警标志置位,并对主机发出的告警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行告警搜索。
    (4) CRC的产生
   
64 b ROM的最高有效字节中存储有循环冗余校验码(CRC)。主机根据ROM的前56位来计CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。


2006320101936784.jpg


3.DS18B20的测温原理
    DS18B20的测温原理如图2所示,图中低温度系数晶振的振荡频率受温度的影响很小[1
,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55 ℃所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。

    另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同,可参看文献[2]。


2006320101937833.jpg


4.DS18B20与单片机的典型接口设计
  
MCS51单片机为例,图3中采用寄生电源供电方式, P11口接单线总线为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管和89C51的P10来完成对总线的上拉2]。当DS18B20处于写存储器操作和温度A/D变换操作时,总线上必须有强的上拉,上拉开启时间最大为10 μs。采用寄生电源供电方式是VDD和GND端均接地。由于单线制只有一根线,因此发送接收口必须是三态的。主机控制DS18B20完成温度转换必须经3个步骤:初始化、ROM操作指令、存储器操作指令。假设单片机系统所用的晶振频率为12 MHz,根据DS18B20的初始化时序、写时序和读时序,分别编写3个子程序:INIT为初始化子程序,WRITE为写(命令或数据)子程序,READ为读数据子程序,所有的数据读写均由最低位开始,实际在实验中不用这种方式,只要在数据线上加一个上拉电阻4.7 kΩ,另外2个脚分别接电源和地。

5.DS18B20的精确延时问题
   
虽然DS18B20有诸多优点,但使用起来并非易事,由于采用单总线数据传输方式,DS18B20的数据I/O均由同一条线完成。因此,对读写的操作时序要求严格。为保证DS18B20的严格I/O时序,需要做较精确的延时。在DS18B20操作中,用到的延时有15 μs,90 μs,270 μs,540 μs等。因这些延时均为15 μs的整数倍,因此可编写一个DELAY15(n)函数,源码如下:
2006320101937738.jpg
   
只要用该函数进行大约15 μs×N的延时即可。有了比较精确的延时保证,就可以对DS18B20进行读写操作、温度转换及显示等操作。
6.结语
   
我们已成功地将DS18B20应用于所开发的“LCD显示气温”的控制系统中,其测温系统简单,测温精度高,连接方便,占用口线少,转换速度快,与微处理器的接口简单,给硬件设计工作带来了极大的方便,能有效地降低成本,缩短开发周期。


参考文献


1]胡振宇,刘鲁源,杜振辉DS18B20接口的C语言程序设计[J]单片机与嵌入式系统应用,2002,(7)
2]金伟正单线数字温度传感器的原理与应用[J].电子技术应用,2000,(6):6668


文章评论0条评论)

登录后参与讨论
我要评论
0
14
关闭 站长推荐上一条 /2 下一条